GREY RELATIONAL ANALYSIS (GRA) OF TRIBOLOGICAL AND THERMAL PROPERTIES OF COW HOOF – REINFORCED BRAKE PADS

Authors

Keywords:

Brake pad, Coefficient of friction, Cow hoof, Moulding pressure, Thermo-gravimetric analysis, Wear rate

Abstract

This study investigates and optimizes the tribological and thermal performance of cow hoof (CH)–reinforced brake pads using Grey Relational Analysis (GRA). The brake pad was produced using CH as the reinforcement material alongside with other additives which are binder (epoxy and hardener), graphite, calcium carbonate and aluminum oxide. These additives were in the proportion of 25 %, 25 %, 10 %, 30 % and 10 % by weight respectively. The produced brake pads were subjected to wear rate and coefficient of friction (COF) tests. GRA was used to obtain values of the moulding parameters that yielded optimum performance. The values of the wear rate and COF of the optimized sample are 0.197 mg/m and 0.781 respectively. Further characterisation revealed a thermal conductivity of 0.0248 W/mK. Thermo-gravimetric analysis (TGA) reveals that while asbestos-based brake pad has a better thermal stability than the CH - reinforced brake pad, the CH -reinforced brake pad has its maximum decomposition at elevated temperature range of 300 ⁰C – 400 ⁰C, which falls within the average brake temperature range. The experimental results of the produced brake pad compared well with the commercial and other existing experimental brake pads, demonstrating CH as a novel agro-waste material for sustainable, asbestos-free brake pad production.

Dimensions

Abutu, J., Lawal, S. A., Ndaliman, M. B., Lafia-Araga, R. A., Adedipe, O., & Choudhury, I. A. (2018). Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal, 21(4): 787-797.

Abutu, J., Lawal, S. A., Ndaliman, M. B., Lafia-Araga, R. A., Adedipe, O., & Choudhury, I. A. (2019). Production and characterization of brake pad developed from coconut shell reinforcement material using central composite design. Springer Nature Journal of Applied Sciences, 1(82), 1-15.

Adah, P. U., Nuhu, A. A., Salawu, A. A., Hassan, A. B., & Ubi, P. A. (2024). Characterization of periwinkle shell ash reinforced polymer composite for automotive application. FUDMA Journal of Sciences (FJS), 8(1), 83-92.

Ademoh, N. A., & Olabisi, A. I. . (2015). Development and evaluation of maize husks (asbestos – free) based brake pad. Industrial Engineering Letters, 5(2): 67 – 80.

Aigbodion, V. S., Akadike, U., Hassan, S. B., Asuke, F., & Agunsoye, J. O. (2010). Development of asbestos – free brake pad using bagasse. Tribiology in Industry, 32(1): 45 – 50.

Ajibola, K. A., Olaiya, K. A., & Alabi, I. O. (2024). Investigation of thermal properties and ash content of sawdust-reinforced composite brake pads. Journal of Scientific and Engineering Research, 11(7): 221-228.

Akramifard, H. R., & Ghasemi, Z. (2016). Friction and wear properties of a new semi-metallic brake pad according to SAE J 661: A case study in PARSLENT complex (Iran). International Journal of New Technology and Research (IJNTR), 2(3), 96-99.

Ammar, Z., Adly, M., Abdalkarim, S. Y. H., & Mehanny, S. (2024). Incorporating date palm fibers for sustainable friction composites in vehicle brakes. Scientific Reports, 14(1), 1-19.

Ampadu, V. M. K., Alrejjal, A., & Ksaibati, K. (2023). Performance and cost-effectiveness of air disc brakes and air drum brakes for truck semi-trailers in different road and speed conditions. Journal of Sustainable Development of Transport and Logistics, 8(1): 24-42.

Ayogwu, D. O., Sintali, I. S., & Bawa, M. A. (2020). A review on brake pad materials and methods of production. Composite Materials , 4(1): 8-14.

Bala, K. C., Okoli, M., & Abolarin, M. S. (2016). Development of automobile brake lining using pulverized cow hooves. Leonardo Journal of Sciences, 2(28): 95-108.

Bashir, M., Saleem, S. S., & Bashir, O. (2015). Friction and Wear Behaviour of Disc Brake Pad Material using Banana Peel Powder. International Journal of Research in Engineering and Technology, 4(2): 650 – 659.

Blau, P. J. (2001). Compositions, functions and testing of friction brake materials and their additives: a report by oak ridge national laboratory for U.S dept. of energy. USA: U.S Dept. of Energy.

Bono, D. S., & Dekyrger, W. J. (2010). Auto technology, theory and services. New York: DELMAR Publishers.

Cracium, A. L., Pinca-Bretotean, C., Birtok-Baneasa, C., & Josan, A. (2016). Composites materials for friction and braking application. Innovative Ideas in Science, 200(1), 1-5.

Dagwa, I. M., & Ibhadode, A. O. A. (2006). Determination of optimum manufacturing conditions for asbestos-free brake pad using Taguchi method. Nigerian Journal of Engineering Research and Development, 5(4): 1-8.

Dagwa, I. M., & Ibhadode, A. O. A. (2008). Development of asbestos – free friction lining material from palm kernel shell. Journal of the Brazilian Society of Mechanical Scientists and Engineers, 1(2): 166 – 173.

Deepika, K., Reddy, C. B., & Reddy, D. R. (2013). Fabrication and preformance evaluation of composite material for wear resistance appication. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(6): 66 – 71.

Dirisu, J. O., Okokpujie, I. P., Apiafi, P. B., Oyedepo, S. O., Tartibu, L. K., Omotosho, O. A., Ogunkolati, E. O., Oyeyemi, E. O., & Uwaishe, J. O. (2024). Development of eco-friendly brake pads using industrial and agro-waste materials. Journal of Engineering and Applied Science, 71(55): 1-42 .

Hase, S. B., & Belkar, S. B. (2015). A study of development and performance characteristics of NAO brake linings with Fly Ash. International Journal of Multidisciplinary Research and Development, 2(2): 225-226.

Hsia, K. H., & Wu, J. H. (1998). A study on the data preprocessing in Grey Relation Analysis. Journal of the Chinese Grey System AssociationJournal of the Chinese Grey System Association, 1(1): 47-53.

Idris, U. D., Aigbodion, V. S., Abubakar, I. J., & Nwoye, C. I. (2015). Eco-friendly asbestos free brake pad; using banana peels. Journal of King Sand University-Engineering Services, 27(1), 185 – 192.

Ikpambese, K. K, Gundu, D. T., & Tuleun, L. T. (2014). Evalution of Palm Kernel Fibres (PKF) for Production of Asbestos – Free Automotive Brake Pads. Journal of King Sand University – Engineering Sciences, 120(7): 1- 9.

Ilie, F., & Cristescu, A. C. . (2023). Experimental Study of the Correlation between the Wear and the Braking System Efficiency of a Vehicle. Applied Sciences, 13(14): 8139.

Irawan, A. P., Fitriyana, D. F., Tezara, C., Siregar, J. P., Laksmidewi, D., Baskara, G. D., Abdullah, M. Z., Junid, R., Hadi, A. E., Hamdan, M. H. M., & Najid, N. (2022). Overview of the important factors influencing the performance of eco-friendly brake pads. Polymers, 14(6): 1-14.

Joshi, A. G., Bharath, K. N., & Basavarajappa, S. (2023). Recent progress in the research on natural composite brake pads: A comprehensive review. Tribology - Materials, Surfaces & Interfaces, 17(3), 1-15.

Kanagaraj, M., Babu, S., Mohan, S. R. J., & Christy, T. V. (2023). The evaluation of friction and wear performances of commercial automotive brake friction polymer composites Available to Purchase. Industrial Lubrication and Tribology, 75(3), 299–304.

Maleque, M. A., Atiqah, A., Talib, R. J., & Zahurin, H. (2012). New natural fibre reinforced aluminum composite for automotive brake pad. International Journal of Mechanical and Materials Engineering (IJMME), 7(2): 166 – 170.

Naidu, M., Bhosale, A., Gaikwad, M., Salunkhe, S., Čep, R. & Abouel Nasr, E. (2024). Tribological investigations of hemp reinforced NAO brake friction polymer composites with varying percentage of resin loading. Frontiers Materials, 11(8), 1-18.

Naidu, M., Bhosale, A., Gaikwad, M., Salunkhe, S., Cep, R., & Nasr, E. A. (2024). Tribological investigations of hemp reinforced NAO brake friction polymer composites with varying percentage of resin loading. Polymeric and Composite Materials, 11, 1-15.

Naidu, M., Bhosale, A., Munde, Y., Salunkhe, S., & Hussein, H. M. A. (2022). Wear and friction analysis of brake pad material using natural hemp fibers. Polymers, 15(1):1-11.

Pujari, S., Ramakrishna, A., & Kumar, M. S. (2014). Comparison of jute and banana fibre composites: a review. International Journal of Current Engineering and Technology, (2): 121 – 129.

Ruzaidi, C. M., Kamarudin, H., Shamsul, J. B., & Abdullahi, M. M. A. . (2011). Comparative study on thermal, compressive and wear properties of palm slag brake pad composite with other fillers, advanced materials research. Australian Journal of Basic and Applied Sciences, 5(10): 790-796.

Sellami, A., & Elleuch, R. (2024). Green composite friction materials: A review of a new generation of eco-friendly brake materials for sustainability. Environmental Engineering Research, 29(3), 1-20.

Shuaibu, Y. A., Ameh, S. E., Abubakar, J. A., Musa, A. J., & Abubakar, G. M. (2023). Development of asbestos-free brake pad using coconut shell powder and coconut shell ash as filler materials with gum arabic as the binder. International Journal of Innovations In Engineering Research and Technology, 10(4): 112-120.

Sunday, G., Borisade, O., Olatunde, A., & James, A. (2021). Evaluation of walnut shell abrasive sandpaper. FUDMA Journal of Sciences (FJS), 5(1), 339-345.

Umamaheswara, R. R., & Babji, G. (2015). A review paper on alternate materials for asbestos brake pads and its characteristics. International Research Journal of Engineering and Technology (IRJET), 2(2): 556-562.

Xiao, X. C., Wang, X. Q., Fu, K. Y., & Zhao, Y. J. (2004). Grey Relational Analysis on factors of the quality of web service. Physics Procedia, 33(1): 1992-1998.

Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos free brake pad. Journal of King Saud University-Engineering Sciences, 28(8), 103 – 109.

Yuvaraj, L., & Jeyanthi, S. (2015). An investigation on chemical treatment of phenol formaldehyde with natural fibres for brake pads. Journal of Chemical and Pharmaceutical Science, 7(1): 419-421.

Zheng, K., Min, Z., Zhang, F., Ren, Z., & Lin, Y. (2025). High heat-fade resistance, metal-free resin-based brake pads: a step towards replacing copper by using andalusite. Chinese Journal of Mechanical Engineering, 38(153): 1-17.

Zhenzhen, F.,Baoting, S.,Rongping, Y., Yimei, L, Hui, W., Shicheng, Q., Shengling, J., Yafei, L., & Vlastimil, M. (2012). Development of eco – friendly brake friction composites containing flax fibers. Journals of Reinforced Plastics & Composites, 31(10), 681-689.

Determination of Coefficient of Static Friction

Published

25-10-2025

How to Cite

Haruna, V. N., & Ibrahim, S. (2025). GREY RELATIONAL ANALYSIS (GRA) OF TRIBOLOGICAL AND THERMAL PROPERTIES OF COW HOOF – REINFORCED BRAKE PADS. FUDMA JOURNAL OF SCIENCES, 9(11), 157-166. https://doi.org/10.33003/fjs-2025-0911-3992

How to Cite

Haruna, V. N., & Ibrahim, S. (2025). GREY RELATIONAL ANALYSIS (GRA) OF TRIBOLOGICAL AND THERMAL PROPERTIES OF COW HOOF – REINFORCED BRAKE PADS. FUDMA JOURNAL OF SCIENCES, 9(11), 157-166. https://doi.org/10.33003/fjs-2025-0911-3992