SIMULATION OF A SECURE COMMUNICATION SCHEME VIA HYBRID SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH MINIMAL CONTINUOUS CHAOS

Authors

  • Kehinde Solomon Oyeleke
    Lagos State University of Science and Technology, Ikorodu, Lagos State
  • Kayode Stephen Ojo
    University of Lagos image/svg+xml
  • Abidemi Emmanuel Adeniji
    Bells University of Technology, Ogun state
  • Victor T. Odumuyiwa
    University of Lagos image/svg+xml

Keywords:

Secure communication, Chaos system, Lyapunov direct method, Message signal

Abstract

This paper uses the Rossler attractor as a classical oscillator and presents a secure communication approach based on the hybrid synchronization of two identical chaotic systems via Lyapunov direct method. Equilibrium and bifurcation are two examples of fundamental dynamical features that are examined. A secure communication scheme is also presented based on synchronizing evolving chaotic systems with an uncertain parameter. The chaotic transmitter, the modulation, the chaotic receiver and the demodulation make up the communication scheme. The message signal is modulated into the system via the modulation process. Next, a public channel is used to transmit the chaotic signals to the recipient. The receiver end achieves synchronization between the transmitter and the receiver systems; and simultaneously estimates the unknown parameter through the design of the controller and parameter update law. The message signal is retrieved using the suitable demodulation technique and the detected parameter. To show the viability and validity of the described secure communication scheme, numerical simulations are performed.

Dimensions

Benkouider, K., Sambas, A., Sulaiman, I. M., Mamat, M., & Nisar, K. S. (2002). Secure communication scheme based on a new hyperchaotic system. Computers, Materials and Continua, 73 (1), 10191035.

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., & Zhou, C. (2002). The ynchronization of chaotic systems. Physics Reports, 366 (1), 1-101.

Bouraoui, H., & Kemih, K. (2013). Observer-based synchronization of a new hybrid chaotic system and its application to secure communications. Acta Physica Polonica A, 123, 259-262.

Cuomo, K. M., & Oppenheim, A. V. (1993). Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett., 71, 65-68.

Gaspard, P., & Bricmont, J. (1999). Chaos, scattering and statistical mechanics. Physics Today, 52(8), 62-64.

Gosar, Z. (2011). Chaotic dynamics Rossler system. Researchgate, 10 doi:10.13140/RG.2.2.27897.62564.

Kocarev, L., & Parlitz, U. (1995). General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 74, 5028-5031.

Li, Z., Li, K., Wen, C., & Soh, Y. C. (2003). A new chaotic secure communication system. IEEE Trans. Commun., 51, 1306-1312.

Li, Z., & Xu, D. (2004). A secure communication scheme using projective chaos synchronization. Chaos, Solitons and Fractals, 22(2), 477481.

Lu, Q. S., Gu, H. G., Yang, Z. Q., Shi, X., Duan, L., & Zheng, Y. (2008). Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mechanics Sinica, 24, 593628.

Miliou, A. N., Antoniades, I. P., Stavrinides, S. G., & Anagnostopoulos, A. N. (2007). Secure communication by chaotic synchronization: Robustness under noisy conditions. Nonlinear Analysis: Real World Applications, 8, 1003-1012.

Ni-huan, L., & Zhi-hong, H. (2012). A hybrid secure communication method based on the synchronization of hyperchaos systems. International Conference on Communication Systems and Network Technologies, 289-293.

Olusola, O. I., Oyeleke, K. S., Vincent, U. E., & Njah, A. N. (2020). Secure communication scheme based on synchronization of non-identical hyperchaotic systems. Journal of Applied Nonlinear Dynamics, 9 (2), 273-285.

Pecora, L. M., & T. L. Carroll. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64, 821-824.

Rai, A., Joshi, M., Upadhyay, K. K., Jyoti, V. K., Shastri, H., & Goyal, S. (2023). Realization of chaotic oscillator and use in secure communication. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100321.

Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76, 1804-1807.

Rossler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397-398.

Rulkov, N. F., & Tsimring, L. S. (1999). Synchronization methods for communication with chaos over band-limited channels. International Journal of Circuit Theory and Applications, 27(6), 555-567.

Samimi, M., Majidi, M. H., & Khorashadizadeh, S. (2020). Secure communication based on chaos synchronization using brain emotional learning. AEU - International Journal of Electronics and Communications, 127, 153424.

Trikha, P., & Jahanzaib, L. (2021). Secure communication: Using double compound combination hybrid synchronization. Proceedings of International Conference on Artificial Intelligence and Applications, 81-91.

Wu, X., Yao, C., & Shuai, J. (2015). Enhanced multiple vibrational resonances by Na+ and K+ dynamics in a neuron model. Scientific reports, 5, 7684.

Yau, H., Pu, Y., & Li, S. (2012). Application of a chaotic synchronization system to secure communication. Information Technology and Control, 41(3), 274-282.

Yeh, J., & Wu, K. (2008). A simple method to synchronize chaotic systems and its application to secure communications. Mathematical and Computer Modelling, 47(9), 894-902.

Zaher, A., & Abu-Rezq, A. (2011). On the design of chaos-based secure communication systems. Communications in Nonlinear Science and Numerical Simulation, 16, 3721-3737.

Zhao, Y. Li, S. Lian, H., & Wu, Z. (2014). A six-dimensional hyperchaotic system selection and its application in DS-CDMA system. Journal of Communications, 9(11), 859-866.

Zheng, Z., & Hu, G. (2000). Generalized synchronization versus phase synchronization. Phys Rev. E, 62, 7882-7885.

Published

30-06-2025

How to Cite

SIMULATION OF A SECURE COMMUNICATION SCHEME VIA HYBRID SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH MINIMAL CONTINUOUS CHAOS. (2025). FUDMA JOURNAL OF SCIENCES, 9(6), 38-44. https://doi.org/10.33003/fjs-2025-0906-3672

How to Cite

SIMULATION OF A SECURE COMMUNICATION SCHEME VIA HYBRID SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH MINIMAL CONTINUOUS CHAOS. (2025). FUDMA JOURNAL OF SCIENCES, 9(6), 38-44. https://doi.org/10.33003/fjs-2025-0906-3672