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Abstract

The shigella bacterium spreads a disease of the digestive tract known as shigellosis. The primary
means of preventing shigellosis have historically been better sanitation and hygiene measures. Every
year, this disease claims the lives of almost 1.1 million people, children under five years of age being
the most affected. In this paper a deterministic mathematical model is proposed describing the
transmission dynamics of human to human shigellosis. The model exhibits two equilibrium states,
the disease-free equilibrium and the endemic equilibrium. However, the disease free equilibrium state
is shown to be both locally and globally asymptotically stable under certain conditions when the
control reproduction is less than unity (R. < 1). In contrast, endemic equilibrium is found to be
globally asymptotically stable when the control reproduction number is greater than unity (R. > 1).
The most sensitive parameters for the control of the spread of shigellosis are identified by the forward
sensitivity index method (one that is very effective for the control of the disease). The contact rate
is found to be the most sensitive among all the parameters, indicating that to avoid the persistence
of the disease, reducing contact between individuals should be emphasized. Finally, we obtained
some numerical simulation results which that show that to eradicate shigellosis, there is need for
minimizing the contact between infected individuals and susceptible ones and also minimize the
number of carriers individuals that progressing to infected compartment when combined with public
enlightenment and isolation of infected individuals.

Keywords: Shigellosis; public enlightenment; isolation; sensitivity analysis.

INTRODUCTION

Shigella bacteria is the cause of shigellosis, commonly
referred to as bacterial dysentery, an infectious disease
of the digestive tract. Shigella bacteria are responsible
for most etiological causes of diarrhea, particularly
bacillary dysentery. The four subgroups of the
bacterial strains are S. flexneri, S. dysenteriae 1,
S. sonnei, and S. boydii (Lindberg et al., 1991).
The majority of active cases and prevalence of
shigellosis are predominantly caused by S. flexneri
and S. sonnei, but the presence of S. dysenteriae 1
generally corresponds to severe dysentery outbreaks
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(Schroeder & Hilbi, 2008). Shigellosis is transmitted
by human-to-human contact or sexual contact,
contaminated food or water, and exposure to infected
excrement. (CDC, 2017). In the early twentieth
century, improvements in housing sanitation and
hygiene significantly decreased the prevalence and
incidence of dysentery and other subgroups of shigella.
Reducing transmission was further aided by the
development of antibiotics for the treatment of shigella
bacteria ( Lampel et al., 2018 ). Shigella infections
cause symptoms such as diarrhea, abdominal pain,
vomiting, and fever (WHO, 2005). People with shigella
infections who do not have symptoms of the disease
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are called carriers. Severe cases of shigellosis can lead
to reactive arthritis, sepsis, seizures, and hemolytic
uremic syndrome. Symptoms usually begin one to
two days after exposure and last five to seven days
(WHO, 2005). Shigellosis epidemics usually occur in
areas with overcrowding and poor sanitary conditions
where person-to-person transmission or contamination
of food or water by bacteria is common. An estimated
1.1 million deaths worldwide are attributed to it each
year (Schroeder & Hilbi, 2008). Approximately 60%
of deaths resulting from the disease affect children less
than or equal to five years of age (Schroeder & Hilbi,
2008). In addition, it is common among travelers
and men who engage in homosexual relationships
(MSM) in countries with higher incomes (CDC, 2017).
Shigellosis is a vaccine-preventable disease, however,
despite multiple Shigella vaccines in existence, the
vaccination coverage for the disease is still minimal (
Levine et al., 2007 ). Shigella species have developed
an increasing resistance to the most commonly used
antimicrobials such as ampicillin, cotrimoxazole,
nalidixic acid and even ciprofloxacin and norfloxacin
over the past few decades (Bhattacharya et al., 2012).
The preferred medication for multidrug-resistant
Shigella infections since the late 1990s has been
fluoroquinolones, such as ciprofloxacin, norfloxacin,
and ofloxacin. However, certain studies have also
documented the emergence of resistance to ceftriaxone
in Shigella (Bhattacharya et al., 2012). The treatment
of shigellosis has become more difficult and has fewer
therapeutic options due to the increasing level of
antibiotic resistance of Shigella.

Many mathematical models have been proposed to
study the dynamics of shigellosis using various control
strategies among are; (Chen et al., 2024) developed
an age-specific susceptible-exposed-infectious /
asymptomatic-recovered individuals (SEIAR) model
in shigellosis. The data of the model were obtained
from the Hubei province Center for Disease Control
and Prevention from 2005-2017. The model divided
the population into four age groups ( < byears,
6-24years, 25-59 years and > 60years ). The model
assesses the transmission of the disease in different
age groups by the effective reproduction number
(both for the infectivity and susceptibility). The
result of the transmission of shigellosis shows that
children under 5 years of age are transmitted the
disease between themselves in most cases, while
normal transmission occurs in the adult age (25-59)
years of age. Intervention to terminate disease
transmission should be taken at the age of groups.
(Edward et al., 2020) developed a mathematical
model for shigellosis with carriers and multiple
control measures were carried in the model. The
effective reproduction number is computed and used
to analyze the local stability analysis of the model.
Global stability analysis has been proved by the

comparison theorem. By lyapunov function the
endemic equilibrium point is globally asymptotically
stable at R, > 1. The model find the parameter
with higher impact in the transmission dynamics of
shigellosis with both direct and indirect transmission (
Direct transmission has higher infections than indirect
transmission). Sensitivity analysis and numerical
simulation are both performed in the model. The
possibilities of eliminating the shigellosis is depend
on the number of control intervention. (Bonyahet
al., 2018) developed a mathematical model on the
effect of saturation treatment in the dynamic of
spread of shigellosis. The compartmental model
consist of susceptible-infected-treatment-recovered
individuals (SITR). The disease free and endemic
equilibriums are all exist in the model. Local and
global stability are obtained from the reproduction
number obtained in the model. The impact of
saturation treatment function on diarrhoea spread has
been demonstrated by numerical simulation results.
In the complete eradication of the diarrhoea pandemic,
treatment effectiveness is a major factor. (Ojaswita
et al., 2014) developed a continuos mathematical
model for shigellosis outbreak. The model divided
the population into susceptible-infected-recovered
individuals (SIR). The disease-free equilibrium state
and basic reproduction number were computed
from the model. The result demonstrates that
shigellosis will be eliminated from the community
or population as long as the basic reproduction
number is kept extremely low. Conversely, if the
basic reproduction number is greater than one,
shigellosis is going to persist in the community
or population at a higher rate. By implementing
several strategies, such as raising public awareness
of treatment and prevention, improving workplace
hygiene, and establishing improved water treatment
facilities, the basic reproduction number can be kept
extremely low.

Reference to the studies mentioned above, in this
study we developed a mathematical modeling and
analysis of human to human shigellosis transmission
to assess the impact of public enlightenment.
motivated by the work of (Edward et al., 2020) by
neglecting environmental contributions (i.e indirect
transmission), incorporating only direct transmission
which is human to human transmission, in addition to
our work we consider aware and unaware susceptible
and isolation of infected individuals which is indeed
important in the dynamics of shigellosis.

SHIGELLOSIS EPIDEMIC MODEL

We developed a mathematical model to study the
spread of shigellosis in a human population at time
t > 0, denoted by N(¢), and subdivided into seven
compartments: Susceptible unaware individuals S, (t)
(those who are healthy but can acquire the infection)
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with the infection rate \; susceptible aware individuals
Sa(t) (those who aware with shigella bacteria) but
some can acquire the infection at a slower rate al,
Exposed E(t) (those who are from S, (¢) and S,(t)
that makes effective contact with carrier and infected
individuals). Carrier individuals C(t) ( those who are
infected with no clinical symptoms and can still spread
the disease). Infected individuals I(t), (those who are
infected with shigellosis). Isolated H(t), (those who
are isolated from I(t)). Recovered individuals R(t)
(those who are recovered from shigellosis). Its assume
that the susceptible unaware human are recruited into
the population at a constant rate m. The susceptible
individuals are aware at a constant rate o, exposed
individuals may either progress to infected or carrier
classes at the rate 6. A proportion w of the exposed
individuals may progress to the infected compartment,
while (1 — w) to the carrier compartment. The carrier
screened at rate ;. Infected individuals are isolated
at the rate 5. The shigellosis-induced mortality
rates assumed to be only in infected and Isolated
compartments at rate d; and dy, while the whole
compartments are decreases by natural death rate

L.
The flow diagram of the model is shown in figure 1

and the variables and interpretations of parameters
are summarized in table 1.

dSy,

e (I1—-p)mr+¢R— (A+ 0+ p)Su,
djta =pm + Sy — (X + u)Sa,

% — ASu 4+ aMS, — (0 + 1) E,

dC

T (1=w)fE — (y1 +p)C, (1)

dl

T =wlE +719C — (61 + 2 + p)1,
dH

o = el- (1 + 3+ 62)H,

dR

Fi H+(1-¢nC — (¢ + pR,
Where
L BU+£0)

N

THEORETICAL ANALYSIS OF THE MODEL

Boundedness and Positivity of Solution

Any of the model’s parameters and state variables are
non-negative for any ¢ > 0. The theoretical framework
deals with the human being population. It is now
possible to demonstrate that for any ¢ > 0, all of the
state variables in the model 1 are non-negative.

Theorem 1 The solution of the model (1) is feasible
for all t > 0 if the solution starts and remains in the

positive invariant set Q0 defined by:
Q= { (5u(0), Sa(0), £(0), 1(0),
C(0), H(0), R(0) € RT : N < Z}

Proof 1 It is sufficient to show that the model
(1) solution enters and remains in the region §).
Let S,(0), S,(0), E(0),1(0),C(0), H(0),R(0) are all
positive. We prove by induction, suppose S, (0) and
Sa(0) are negatives, then there exists a time t; > 0,
such that S,(t) > 0,S,(t) > 0 and R(t) > 0 for
t €10,t1) and Sy(t1) = Sa(t1) = R(t1) = 0. Now, the
infection classes in (1) satisfied the following,

%@ > —(0+wEW), for tel0ty),
dew) —(m+wC@), for tc[0,t),
dt
dI(t) ?
oz~ w+a)I) for tE[0,t),
dgt(t) > —(p+y3+d2)H(t) for t€]0,t1).

It follows that E(0) > 0,C(0) > 0,1(0)>0,H(0) >0
and R(0) > 0 fort € [0,t1). Thus, from the first
equation of the system (1), we have

dS(,;t(t) > —(A+ o0+ u)Sy(t) for tel0,t1).
45, (1)
dt

So, we see that 5,,(0), Sq(0) and R(0) are both positive,

this contradict the assumption that Sy, (t1) = Sq(t1) =

R(t1) = 0. Hence Sy(t) , Sq(t) and R(t) are positive.

Also, the system of equation (1) can be written as
follow,

> —(aX+ p)Se(t) for t €[0,t1).

X
PO _ vy (1) + M), 0
with
Yt)=(E, C I, H R)",
ks 0 0 0 0
(1-w)f  —ky 0O 0 0
N = wb 714 —ks 0 0
0 0 Yo —ks 0

where, k3 = (0 + ), ks = (y1+ p).ks = (1 +72).k6 =
(u+73),kr = (u+ ¢). Clearly N is a Metzler matriz
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Figure 1: The flow diagram describing the model (1).

for the fact that S, (t) and S.(t) are positive. This

suggests that 4, the subsystem, is a monotone system.

Therefore, under the flow of subsystem (4), RZ_ 18
mvariant.

Shigellosis-free Equilibrium

A state of equilibrium known as ”shigellosis-free
equilibrium” takes place when there is no infection in
the society. By setting the equations for the right-hand
side of the system 1 to zero, the shigellosis-free

equilibrium can be obtained as follows:
e’ = (S, 50, E°,C°1°, H?, R%) =

((1—17)7r ™ (pp +0) 00000) (6)
pto lp(pto) )

Basic Reproduction Number

When an infected person interacts with a fully
susceptible population in the absence of vaccination
and awareness, the number of new infections they
cause is known as the basic reproduction number
(represented by Ro = p(FV 1) in the model 1. Here,
p represents the spectral radius of the next generation

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 69 - 82 72



MATHEMATICAL MODELING AND ...

Ahmad et al.

FJS

Table 1: Interpretation of the state variables and parameters used in the model (1).

Variable

Description

Total population

Susceptible unaware individuals
Susceptible aware individuals
Exposed individuals

Carrier individuals

Infected individuals

Isolated individuals

Recovered individuals

Recruitment rate

Natural mortality rate
Awareness rate

Progression rate of E to I or C
Proportion of E that are carrier C
Recovery rate of C' and H
Isolation rate

Disease induced death rates of I
Disease induced death rates of H
Progression rate of C' to I or R
Immunity wining rate

matrix, FV~1). The stability of the equilibrium is
established using the next-generation matrix technique

and

(Abubakar et al.,2025, Andrawus et al., 2025 and ks 0 0 0
Ibrahim et al., 2025). The new infection terms (w—1)0 k4 0 0
are represented by the matrix F', while the existing V=
transition terms are represented by the matrix V. —wo —ng ks 0
0 0 —v2 ke
k™! 0 0
0 BEhatSy) BSsais) - —y ka0
o _0(gw=1)y1—kaw) g ka1
e 0 0 0 0 ) ks ka ks k4 ks 5
B (a(w=1)71—ks w)y2 0
0 0 0 0 — k3 Z4 ks Z: ! k’f/:;kqﬁ kg?%
0 0 0 0
B(SaatSu)0 (ks w—waqyit+kaw+€ks+71q9) B(Saat+Su)(Eks+y19) B (SeatSu) 0
Nks ka ks Nk ks Nks
. 0 0 0 0
FV— =
0 0 0 0
0 0 0 0
Equation (11) below gives the eigenvalues of the Where;
matrix in (10)
0 = T
n+o
0 m(up + o)
(11) So=—r——+
0 p(p+ o)
B (Sa otSu)0 (—€ ks w—w gy1+ks w+E ks+71 q)
Nk ka ks
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The dominant eigenvalue is

BO((L — p)u+ alup + o)) (1 — w)lks + (1 — w)y1q + wky]

Re = 13
kskaksp(p + o) (13)

Epidemiological Interpretation of control isolation.

reproduction number (R.) : Is the number

The basic reproduction number can be obtained if the

of secondary cases produced by shigellosis infected control parameters are zero o = 7z = 0.

individuals during the entire infection period in
a population with presence of enlightenment and

BO((1 —p) +ap)[(1 —w)é(p+ 1) + (1 —w)y1q +w(y + p)]

Ro (0 + ) (71 + ) (p + 01) 44
Epidemiological Interpretation of basic is locally asymptotically stable. Therefore, a locally
reproduction number (Ry ) : Is the number asymptotically stable shegallosis-free equilibrium
of secondary cases produced by shigellosis infected refers to the state by which a small number
individuals during the entire period of infection in of infections will not lead to a larger outbreak.
a population with absence of enlightenment and Mathematically, this condition is met if the real parts
isolation. of all the linearized system’s eigenvalues are negative

Local Stability of The DFE negative. This applies to Theorem (2) below.

When a minor perturbation does not affect the Theorem 2 The shigellosis free equilibrium (SFE)

equilibrium state of a system, then we say the system ¢’, of the model (1), is locally-asymptotically stable
(LAS) in Q if Re < 1, and unstable if R, > 1.

Proof 2 The system (1) is linearized by computing the Jacobian matriz at the shigellosis-free equilibrium, as
follows,

-k 0 0 —B&1n —B 1L 0 0
o —u 0 —Ba& Ly —Bals 0 0
0 0 —k3 BE (OéLg-‘rLl) I5) (()&L2+L1) 0 0
JE®=]1 0 0 (1-w)o —ky 0 0 0 (15)
0 0 0w Y19 —ks 0 0
0 0 0 0 gp —ks 0
. 00 0 (1-g)mn 0 vs  —kr |
where )
p, = t=pe (o)
pto (n+o)
The matrix in equation (15) is reduced by row-echelon form as,
[ diy 0 0 dig dis 0 0 T
0 dys O % %ﬂdlsdm 0 0
0 0 dss dsq dss 0 0
J(GO) _ 0 0 0 dss d4<ti;:is4 da3 _ d4§3i35 0 0 (16)
0 0 0 0 d33 dag dss—dsq 322 3221‘322, gzi ds4—d3s daa dss 0 0
0 0 0 0 0 des O
L O 0 0 0 0 0 dy7 |
Where, d22 = — U, d24 = —ﬂang, d33 = —kg,

d3y = BE(Ly+aky), dss = B(Li1+als), dyz = (1-w)b,
din = —ki, diz = —p§L1, diy = —fLa, d21 = o, dag = —hs, ds = 0, dsa = Mg,
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dss = —ks, des = 2, des = —k¢, dra = (1 — @)1,
dve673, dvr = —ks.

From (16) we obtained the eigenvalues as
_ dor -
des
ds3
ds3 dag—dzq dag (17)

ds3

d33 daq ds5—d3q das dss+d3s das dsa—das dag dss
d33 dga—d3adas

dao
di1

Obviously, A1, A2, A3, ¢ and A; are all negatives
from (17). Now for the remaining eigenvalues after
simplifications, we have

—kskyks + 69§(L1 + aLg)[(l — w)kj5 + (1 - w)’qu + UJ}{,‘4]

A4 is also negative.

PN —ksky + BOE(1 —w) (L1 + aLy)

ksky — BOS(Ly + aLo)

<— —ksksks + ﬁé)f(Ll + aLg)[(l — w)k5+

(1 —w)y1q + wkq] <0, 23)

< BOE(L1 + aLs)[(1 — w)ks+

24
(1 — w)%q + wk‘4] < ksksks, ( )

— ﬂ@g(Ll + O[LQ)[(I — W)kg) —+ (1 — W)’qu + Wk4]
kskyks

(25)

after substituting L; and Ls in (25) we have

BO((1 —p)p+ alup + o)) [(1 —w)ks + (1 — w)y19 + wky]

phkskaks(pu + o)

=R.<1.

(26)

This completes the proof if R, < 1, which indicates
that all the eigenvalues are negative; if R, > 1, it
indicates instability.

Global Stability of Disease-Free Equilibrium

In order to determine whether the interventions
included in the model can effectively control shigellosis
infection in a large number of infected individuals, it is
essential to consider the global stability of a dynamical
system, which is defined as its stability even under
large perturbations. Consequently, we propose the
following theorem to guarantee the stability of the

system ((1)):

" <0, (18)
< —ksky + BOE(1 —w)(L1 + aLs) <0, (19)
<~ 595(1 — w)(Ll + OLLQ) < k3k4, (20)
BOE(1 — w) (L1 + aLs) < 1. (21)

ksky

Also )5 is negative
<0, (22)

Theorem 3 The disease-free equilibrium € of the
model (1) is globally-asymptotically stable in Q if
R. < 1 and unstable if R, > 1.

Proof 3 To prove the global asymptotic stability of
the disease-free equilibrium, the two axioms [N1] and
[N2] for R. < 1 must be satisfied (Castillo-Charez
and Son, 2004). System (1) is separated into
two subsystems, X; = (S9,8% R%) and X, =
(E°,C°,I°, H®), to make analysis easier. X, € RE
represents the infected classes, whereas X, € R‘:’_
represents the uninfected subpopulation.

This partition allows the system (1) to be rewritten
as two connected differential equations, one governing
X, dynamics and the other governing Xo dynamics.

dx
7; = F(X1, X2),

X (27)
d—t? = G(X1,X3) : N(X41,0) = 0.

N;: global stability of X;.

The disease-free equilibrium can now be represented in
terms of the partitioned system as:

60 = (X17 O)a

where the infected compartments are all set to zero.

adx (1—p)7r+¢R0 - (U+M)Sg
dTl = F(X3,0) = pr+ 089 — S0
—(¢+pR°
(28)
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The solution of a linear ODE in (28) yields,

(1-p)m+ PR’ _ (1-p)m+ PR° e (o +mt

(0 + p) (0 +p)
0 0
DTSy PT84 g0(g)ert = §0(),
o

+ 89(0)e (7Tt = §5(¢),

(29)

RO(0)e~ (@1t = RO(¢).

It is evident from system (1) that as t — oo, the sum S2(¢) + S9(t) + R°(t) approaches the total population
NO(t), regardless of the individual values of S9(t), S%(¢), and R°(¢). Consequently, the uninfected subsystem
converges to X; = (N?,0), which is globally asymptotically stable.

NQ:N(Xl,Xg) = AX2 - N(X17X2) Z 0

—(04p) g4 0P BEw 4 afeS, 0
1-wb) —(n+p 0 0
A= ( 30
wo 7q —(1+72+p 0 (30)
0 0 Y2 —(02 + 3 + 1)
The matrix A qualifies as a Metzler matrix due to the non-negativity of its off-diagonal elements.
CO 0 a CO 0
B( N+0§I )52 + Ba( N;FEI )52 _ (9 + ,LL)EO
(1= wh)E® — (31 + p)C?
N(X1,X5) = (31)
WOE® + 41qC° — (1 + v2 + 61)1°
Y2l — (e + 3 + 62) H°
Then, to eliminate shigellosis, regardless of the initial number
of infected individuals.
0
_ 0 Shigellosis Endemic Equilibrium Point
N(X1,X2) = AXe — G(X1, X2) =
(X1, X2) 2 = G(X1, Xo) 0 When C # 0 and I # 0 this implies that the shigellosis
0 invades the population at . As such, setting the vector
therefore N (X1, Xa) = 0. field of (1) to zero, we obtain the equilibrium point
’ at endemic state, as:
Theorem (3) has important epidemiological

implications: it indicates that maintaining the control
reproduction number below unity (R, < 1) is sufficient

SZ*:_ (p—l)ﬂ'
Atpu+o
e w1t Npto)

A pto)(ad+p)
A ((ap—p+ 1D p+a(c+N)

6* — (S:;*’SZ*E**,C**7I**7H**’H**)

BT = ks A+ p+o0)(aX+p)
C**:iem (w—1)((ap—p+1)pu+a(oc+A))
kq ks ()\"‘FM"FO‘)(O&)\"‘/J)
o 0w -y —kwA((ep—p+rhuta(o+h)
kskyks (X4 p) (A +p+o0)
e 20 (qw—1D)m —wks) ((ap—p+p+a(oc+))

k3k4k5k6 (OZ)\"‘,U)()\"‘/J/"‘O')

The model does not include the R term, which refers
to recovered individuals. This exclusion is reasonable
because once individuals recover, they are no longer
susceptible and hence do not contribute to the endemic

dynamics. However, waning immunity could cause
some recovered individuals to become susceptible
again, returning to the susceptible population. While
waning immunity is not directly incorporated into the
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model, it is an important consideration when analyzing
the disease dynamics. If immunity wanes, recovered
individuals may become susceptible, potentially
altering the dynamics of the disease.

Existence of Endemic Equilibrium

The existence of an endemic equilibrium was
established using Descartes’ Rule of Signs, which
states that the number of real roots of a polynomial is

equal to the number of sign changes in the polynomial.
Additional details can be found in Andrawus et al.

(2024) and Ibrahim et al. (2025). In the endemic

state, the force of infection is given by:

BI* +€C7)
[ A . A 33
A T (33)
where,

N*=8'+S:+E*+C*+ 1"+ H". (34)

Substituting (32) in equation (33), we have the
following quadratic equation,

MM 4+ Mo\ + My = 0 (35)

where,

My =a(kekiks +0 (1 —w)keks +60(q(1 —w)y1 +kaw) ks + 720 (q(1 —w)y1 + kgw)),

My =kgksks +0 (w—l)k6k5—9(q(w—1)’yl—k4w)k6—729(q(w—1)fyl—k:4w)

(a0 + (ap—p+ 1)+ (1 —p) ke ks ks k3),
M3 = uk3k4l€5[1 - Rc]

It is evident that M7 > 0 since all the parameters are
nonnegative and 0 < w < 1. Hence, depending on the
sign of My and M3 we claim the following theorem.

Theorem 4 The endemic equilibrium point of the
model (1) has a positive equilibrium whenever R, > 1.
i. If My > 0 and M3 > 0 <= Ry < 1. The quadratic
equation (35) has mo positive real root, implies the
model has no positive equilibrium.

1. If Mo >0 and M3 < 0 <= Ry > 1. The quadratic
equation (35) has one positive real root, implies the
model has unique positive equilibrium.

iti. If My <0 and M < 0 <= Ry > 1. The quadratic
equation (35) has one positive real root, implies the
model has unique positive equilibrium.

w If My < 0 and Mg > 0 < Ry < 1. The

Proof 4 We construct a Lyapunov function

quadratic equation (35) has either two, one or no
positive real root depend on M2 — 4MyMs, implies
the model has either two positive equilibria, unique
positive equilibrium or no positive equilibrium.

For reference, the following theorem was developed
using items (ii) and (iii) of theorem (4).

Theorem 5 The system (1) has a unique positive
endemic equilibrium if R, > 1.

Global Stability of EE Point

Theorem 6 If R. > 1, the endemic equilibrium €*,
is globally asymptotically stable.

F= (su S S;;*ln% ) + <Sa g g Se > + (E — B - E**ln% )
+79 c-C C lnc + . I-1 I lnI (37)
L0+ e+t p)(e + p) (H_H** _ g ) .

029 H

When (37) is differentiated in relation to time, we obtain

. SEN SEN E*\ .
() () ()

(0 +p) (1_ C**>C'

(0 + p)(g +p) (11;*)j+ (0 4+ p)(g+ 1) (v2 + 1)

Oq 0729

with

N = (39)

T
I

0 C
» (38)
L
(=)
As we alter the infection’s force, we have
A= B(I+£0) (40)
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where When (1) is substituted with (38), we obtain
B=pT (41)
1
Z* S;*
F= 1—5 (1—p)r+¢R— A+ 0+ p)Su) + 1_5 (pm 4+ Sy — (X + 1) S,)
+ <1 7 ) (ASy +aXS, — (0 +p)E) + ( Jgu) (1 c > (1 =w)E — (v1 +p)C)
O+mlgtm [ I* (42)
+ # (1 -5 ) (WOE +y1qC — (51 + 72 + p)I)
(0 + 1) (g + 1) (72 + 1) < H)
T 1- I—(u+7s+06)H
Brd 77 ) (2 = (u+ns + 82)H)
With relationships
(I—p)m = (A" +pw)S."
pr = (X" + )S57,
w FeATS (0 +p) N (43)
OE™ = (1 +p)C™,
1O = (2 + ) I,
VoI = (pn+y3)H™.
We may simplify by changing the relations in (43) to (42).
< Kk _ u _ U *ok _ a _ a
F — :uSu (2 S;:* Su ) +:uSa (2 S;* Sa >
S S,E* EC*™ CI*™ IH** H
e (o S2* SuET B B _ 44
A5 (6 S. SyE E=C o1 T°H H**) (4
o S S E*  EC*™ CI*™ IH* H
T ars, (6 S, S*E  EvC O~ TvH H)
Since the arithmetic mean is greater than the geometric mean we have:
Su Gk Sa G
— _Zu ) < — _Za ) <
-sr-) =0 (%) =0
e — — — — < 4
<6 Su SxFE  E>*C C*I I*H H**) =0, (45)

IN

0.

o S S.ET  EC™ CI* IH™  H
S. S#E E=C C=I I*H H"

Thus, we have that F < 0 for R, > 1
since the relevant wvariables in the equations

better understanding of the factors that impact the
dynamics of disease transmission. Each parameter

for SE*(t), Si*(t), E**(t), C**(t), [**(t), H**(t), R**(t)
are at endemic steady state it follows that
these can be substituted into the equations for
Su(t),Sa(t), E(t),C(t),I(t), H(t) and R(t).Therefore,
the result follows by applying Lasalle invariance
principle (Laselle, 1976).  Hence the endemic
equilibrium (EE) €* of the model (1) is globally
asymptotically stable (GAS).

Sensitivity analysis

Sensitivity analysis is employed to identify the most
influential parameters that affect the reproduction
number’s value. Through this analysis, we gain a

is classified based on its sign, with the most
sensitive parameters being identified as those with
negative signs, which contribute to a decrease in the
reproduction number, and those with positive signs,
which increase the reproduction number. The R.
normalized local sensitivity index with regard to the
parameters is provided by,

R QO OR,
Q

TR o

TR,
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Table 2: Forward Normalized Sensitivity Indices

Parameter Elasticity Indices Values of the Elasticity index
9 nye 0.5305
¢ ngc 0.2653
m n,° -0.4256
o nke 0.3112
8 nge 9.9893
w nie 0.3876
q ngc -0.3912
71 M..° -0.5192
V2 né” -0.7406
3 Ny e -0.2318
o nzfc 0.2218
p nike 0.6231
&1 nie -0.3421
02 n}iﬁ -0.3421
Normalized Forward Sensitivity Indices for R
1.00 4
0.75 4
g 0.50 7
g
3 0257
:‘; 0.00 1 .
_
v —0.25
=0.50 1
=0.754
% ' Q—I ?}I -@I l‘.\r ,\»‘ .(\.I ,@I QI b—»r h’l‘ [+ I G-I QI
Parameters

Figure 2: Bar chart graph showing PRCC of model (1) parameters.

NUMERICAL SIMULATIONS

Numerical simulations of model (1) offer a valuable
tool for understanding the dynamics of shigellosis by
visualizing the effects of various factors on disease
transmission and control. Parameters used in the
model are either derived from existing literature or
assumed. Two control parameters, each varying
from 0 to 1, provide the ability to observe the
impact of different parameter values on the spread
and control of the disease in a population. The
simulations offer a dynamic representation of the
complex interactions between factors influencing the
disease dynamics, aiding in the development of
effective control strategies.

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 69 - 82

DISCUSSION

Table ?? parameters and state variables were used
to simulate the model’s transmission dynamics of
shigellosis. The way the state variables behave and
the flow from one compartment to another are both
investigated. Figure 3 described the behavior of
unaware and aware susceptible with different levels of
awareness as the rate increases the number of unaware
drastically decreases, and as the rate increases the
number of aware increases significantly. Figure
4 described the behavior of infected and Isolated
individuals with different values of 7, as the rate
increases the number of infected drastically decreases,
and as the rate increases the number of isolated
increases significantly. Figure 5 described the behavior
of carrier and infected individuals respectively with
different values of contact rate 3. The graph raises
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Table 3: Ranges and baseline values of parameters of model (1).

Parameter Ranges (Baseline) Unit Reference
s 462 per years
0 0.35 Chen et al., (2014)
1 0.0012 per years (Edward et al., 2020)
w 0.9 per years  Chen et al., (2014)
q 0.0286 per years (Edward et al., 2020)
" 0.56 per years (Edward et al., 2020)
Yo 0.0011 per years  Chen et al., (2014)
Y3 0.021283 per years Estimated
) 0.000684 per years (Edward et al., 2020)
01 0.000055 per years (Edward et al., 2020)
02 0.059351 per years Estimated
o 0.6356 per years Estimated
P 0.67 per years (Edward et al., 2020)
@ 0.445 per years (Edward et al., 2020)

Impact of Public Enlightenment on Susceptible Unaware (Su) and Aware (Sa)

Unaware Su(t), 0=0.2
Aware Sa(t), 0=0.2
400000 A Unaware Su(t), 0=0.5
Aware Sa(t), 0=0.5
Unaware Su(t), 0=0.8
Aware Sa(t), 0=0.8
300000 A
[=
=
©
E 200000
£
<I~o
hh::-..h
100000 Moy
0 -
0 2 4 6 8 10 12

Time

Figure 3: Pattern of susceptible aware and unaware individuals with different values of o.

when the contact rate is greater. The more the contact
rate, the more the number of infected individuals

CONCLUSION

In this paper we developed a deterministic
mathematical model describing the transmission
dynamics of human to human shigellosis. The
model exhibit two equilibrium state, the disease free
equilibrium and the endemic equilibrium. However,
the disease free equilibrium state is shown to be
both locally and globally asymptotically stable under
certain conditions when the basic reproduction is less
than unity (R. < 1). The endemic equilibrium on the
contrary is found to be globally asymptotically stable

when the basic reproduction number is greater than
unity (R. < 1). The most sensitive parameters for
the control of the spread of shigellosis are identified by
forward sensitivity index method as shown in figure
2, and found contact rate 5 to be the most sensitive
parameter. Further more, the numerical simulations
carried out in figure 3 show the impact of public
enlightenment. Similarly, figure 4 show the impact of
isolation and figure 5 show how contact rate increasing
the carrier and infected compartments respectively.
Finally the result shows that to eradicate Shigellosis,
there is need for minimizing the contact between the
infected individuals and susceptible ones and also
minimize the number of carrier individuals progressing
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Impact of Isolation on Infected Individuals (1) and Isolated Individuals (H)

— Infected I(t), y-=0.5
60000014 == Isolated H(t), y=0.5 P
—— Infected I(t), y2=0.7 oo
== |solated H(t), y2=0.7 b g 3
500000 4 — Infected I(t), y2=0.9 AR ,,’
== lsolated H(t), y.=0.9 ,’ P I
/7
400000 +
f=
h=l
=]
£
2 300000 -
£
200000 A
100000 4
0 -

- o ey,
- P
- s_eTe-
- -~ ——
- =

T T T

0 2 4

T T T T

6 8 10 12
Time

Figure 4: Pattern of infected and isolated individuals with different values of o

1e6 Impact of Contact Rate (B) on Infected Individuals (1) and Carriers Individuals (C)

- Infected I(t), =0.5
Infected I(t), B=0.7 | 35000
Infected I(t), =0.9
N Carriers C(t), p=0.5
Carrfers C(t), p=0.7 | 30000
Carriers C(t), B=0.9
< 0.8 1 5
§ 25000 .2
z ®
gL a
a 0.6 3
3 k20000 @
¢ B
£ o
0.4
15000
0.2
=
N - 10000
<a.
S
0.04 ™~
0 2 4 6 8 10 2

Time (months)
Figure 5: Pattern of carrier and infected individuals with different values of g

into infected compartment when combined with public
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