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ABSTRACT 

This article presents two A(a), zero–stable, consistent and convergent methods for the numerical approximation 

of the High Irraddiance problem. The first method is a first derivative method while the second method is a 

second derivative block hybrid method for the numerical solution of initial problems most especially the High 

Irraddiance (HIRES) problem with origins from chemical kinetics. The first method is of order five with a small 

region of absolute stability, while the new second derivative method is of order nine with a large region of 

absolute stability as well as smaller error constants. The methods stems from the interpolation and collocation 

approach with un-equidistant give points. Sequel to using the methods in solving the HIRES problem which 

has no exact solution, we compared the performance of our second method with a method in a recent literature 

and the method outperformed it. This gave us the motivation in using the method to solve the problem under 

consideration. 
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INTRODUCTION 

Large-scale chemical kinetics simulations are fundamental to 

understanding complex reactive systems in scientific and 

engineering domains such as combustion modeling (Zhang et 

al,. 2022; Lu & Law, 2009) atmospheric chemistry (Mashruk 

et al., 2024), nuclear fusion (Jacobson, 2005), and 

astrophysical processes (Simon et al., 2007). One particularly 

demanding area is the High Irradiance (HIRES) problem, 

which involves modeling chemical transformations in 

environments subjected to intense radiation fields, such as in 

high-power laser systems or solar plasma phenomena. These 

scenarios are characterized by extremely rapid reaction 

dynamics, highly stiff differential systems, and extensive 

reaction networks, often involving thousands of chemical 

species and reaction pathways (Trieschmann et al., 2023; 

Bennett et al., 2011). Conventional numerical methods–both 

explicit and implicit—encounter severe challenges when 

applied to the HIRES problem. Explicit solvers are restricted 

by the stiffness of the chemical kinetic equations, 

necessitating extremely small-time steps, while implicit 

methods, though stable, involve complex matrix operations 

that scale poorly with system size (Hawagfeh & Kaya, 2004; 

Abdullahi, 2018). To overcome these issues, researchers have 

proposed Block Hybrid Methods—a family of numerical 

integrators that blend the features of multistep and Runge-

Kutta schemes, enabling enhanced accuracy and stability 

while maintaining computational tractability (Rufai, 2024; 

Singh et al., 2021). Block hybrid methods allow for the 

simultaneous computation of multiple solution points within 

a time step, improving parallelizability and offering flexibility 

in handling stiff reactions. These advantages become 

particularly useful in the HIRES context, where 

computational intensity and accuracy must be tightly 

balanced. Recent innovations in computationally efficient 

block hybrid methods have incorporated techniques such as 

adaptive time-stepping (Spiteri, 1997), Jacobian sparsity 

exploitation, and high-performance linear algebra routines to 

reduce overhead and improve scalability on parallel 

computing architectures (Kowalski et al., 2021; Castro et al., 

2024). In their pioneering work, Smith and Anderson (Smith 

& Anderson, 2005) addressed the computational difficulties 

posed by high irradiance in photovoltaic cells by developing 

a first-order HIRES method. Their approach involved 

adjusting the step size of the numerical solution in response 

to the irradiance levels, thereby enhancing stability. This 

method represented a significant improvement over 

traditional Euler methods, particularly in scenarios where 

irradiance changes rapidly. They developed a first-order 

numerical method that adapts to high irradiance conditions, 

ensuring both stability and accuracy. However, their method 

is of first–order, but in this paper, we present two block 

methods for the numerical solution of the HIRES problem. 

Recently the problem was also solved using the variational 

method and the numerical solution of the HIRES problem at 

five minutes. At this time, six solutions were obtained and at 

three hundred and fifty minutes for the remaining two (Amat 

et al., 2019).  

Amat et al (2019) presented the numerical solution of the 

HIRES problem for different concentrations at different time 

intervals. Stiff systems of ODEs face severe time step 

restrictions, especially for large simulation times. The new 

variational method proposed by Amat et al (2019) has been 

successfully applied to stiff ODEs arising from chemical 

reactions with large systems. The variational method has the 

advantage of never getting stuck at local minima and always 

converges to the solution regardless of the initialization, 

unlike implicit Runge-Kutta methods. Nevertheless, the 

solutions they gave was not compared with any other methods 

in the literature. Here, we compared our solution to the HIRES 

problem with the well known stiff ODE solver ode15s for 

different step sizes; and our results are promising. This study 

explores the development and application of computationally 

efficient two block hybrid methods for simulating large-scale 

chemical kinetics under high irradiance conditions. By 

tailoring these advanced numerical schemes to the unique 

demands of the HIRES problem, this work aims to establish a 

reliable and scalable framework capable of handling the 

mathematical and computational complexities inherent in 

such simulations. 
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MATERIALS AND METHODS 

A 𝑘–step first and second derivative block hybrid linear 

multistep methods for the numerical solution of ordinary 

differential equation are respectively (Lambert, 1973): 

𝑦(𝑥) = ∑ 𝛼𝑗
𝑘
𝑗=0 𝑦𝑛+𝑗 + ℎ ∑ 𝛽𝑗

𝑘
𝑗=0 𝑓𝑛+𝑗 ,        (1) 

and 

𝑦(𝑥) = ∑ 𝛼𝑗
𝑘
𝑗=0 𝑦𝑛+𝑗 + ℎ ∑ 𝛽𝑗

𝑘
𝑗=0 𝑓𝑛+𝑗 + ℎ2 ∑ 𝛾𝑗

𝑘
𝑗=0 𝑔𝑛+𝑗 ,    

     (2) 

where the 𝛼𝑗 , 𝛽𝑗 and 𝛾𝑗’s are unknown polynomials,  

𝑦𝑛+𝑗 = 𝑦(𝑥𝑛 + 𝑗ℎ), is an approximate solution 

𝑦′(𝑥𝑛+𝑗) = 𝑓𝑛+𝑗 = 𝑓(𝑥𝑛 + 𝑗ℎ, 𝑦(𝑥𝑛 + 𝑗ℎ)), 

and 

𝑦″(𝑥𝑛+𝑗) = 𝑓𝑛+𝑗
′ = 𝑓′(𝑥𝑛 + 𝑗ℎ, 𝑦(𝑥𝑛 + 𝑗ℎ)) = 𝑔𝑛+𝑗 . 

Besides, the continuous coefficients are 

𝛼𝑗(𝑥) = ∑𝛼𝑗,𝑗+1

𝑘

𝑗=0

𝑥𝑗 , 𝛽𝑗(𝑥) = ∑𝛽𝑗,𝑗+1

𝑘

𝑗=0

𝑥𝑗 , 

and 

𝛾𝑗(𝑥) = ∑𝛾𝑗,𝑗+1

𝑘

𝑗=0

𝑥𝑗 ,for𝑗 = 0(1)⋯ , 𝑘 − 1. 

The following matrix equation 𝑃𝑄 = 𝐼, is solved where 𝐼 ∈

𝑅(𝑡+𝑚)×(𝑡+𝑚) is an identity matrix, 𝑃 and 𝑄 are real 
(𝑡 + 𝑚) × (𝑡 + 𝑚) matrices (𝑡 interpolation points 0 < 𝑡 ≤
𝑘) and 𝑚 collocation points, to obtain 𝛼𝑗(𝑥), 𝛽𝑗(𝑥) and 𝛾𝑗(𝑥) 

which are the first rows of 𝑄  (Onumanyi et al., 1994). 

 
Derivation of the New First Derivative Hybrid Block Linear Multistep Method (FDHBLMM) 

Let 𝑦𝑛 = 𝑦(𝑥𝑛)and 𝑓𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛), 𝑦𝑛+𝑖 = 𝑦(𝑥𝑛+𝑖) = 𝑦(𝑥𝑛 + 𝑖ℎ), for 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 ∈ {1,
4

3
,
9

5
, 2}, ℎ =

𝑏−𝑎

4
, 𝑓𝑛+𝑖 =

𝑓(𝑥𝑛+𝑖 , 𝑦𝑛+𝑖) = 𝑓(𝑥𝑛 + 𝑖ℎ, 𝑦(𝑥𝑛 + 𝑖ℎ)). By making the substitution 𝑡 = 1,𝑚 = 5 and the above into equation (1), we 

obtained the continuous formulation: 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛 + ℎ [𝛽0(𝑥)𝑓𝑛 + 𝛽1(𝑥)𝑓𝑛+1 + 𝛽4

3

(𝑥)𝑓
𝑛+

4

3

+ 𝛽9

5

(𝑥)𝑓
𝑛+

9

5

+ 𝛽2(𝑥)𝑓𝑛+2].    (3) 

The matrix 𝑃  becomes: 

𝑃 =

[
 
 
 
 
 
 
 
1 𝑥𝑛 𝑥𝑛

2 𝑥𝑛
3 𝑥𝑛

4 𝑥𝑛
5

0 1 2𝑥𝑛 3𝑥𝑛
2 4𝑥𝑛

3 5𝑥𝑛
4

0 1 2𝑥𝑛+1 3𝑥𝑛+1
2 4𝑥𝑛+1

3 5𝑥𝑛+1
4

0 1 2𝑥
𝑛+

4

3

3𝑥
𝑛+

4

3

2 4𝑥
𝑛+

4

3

3 5𝑥
𝑛+

4

3

4

0 1 2𝑥
𝑛+

9

5

3𝑥
𝑛+

9

5

2 4𝑥
𝑛+

9

5

3 5𝑥
𝑛+

9

5

4

0 1 2𝑥𝑛+2 3𝑥𝑛+2
2 4𝑥𝑛+2

3 5𝑥𝑛+2
4 ]

 
 
 
 
 
 
 

.        (4) 

By replacing 𝑥𝑛with 𝑥𝑛+1 − ℎ, 𝑥
𝑛+

4

3

= 𝑥𝑛+1 +
ℎ

3
, 𝑥

𝑛+
9

5

= 𝑥𝑛+1 +
4ℎ

5
, 𝑥𝑛+2 = 𝑥𝑛+1 + ℎ, the 𝑃 matrix reduces to: 

The determinant of the matrix above is 
3584

375
ℎ10. The determinant of 𝑃 is non–zero if and only if 

3584

375
ℎ10 is non–zero or ℎ ≠ 0. 

Now, we invert 𝑃 using 𝑃𝑄 = 𝐼 where 𝐼 is an identity matrix of size six by six. The first row of 𝑄 gives the continuous 

coefficients; 
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We evaluated the continuous formulation above at 𝜓 = 0,𝜓 = −
ℎ

2
, 𝜓 = −

7

9
 and 𝜓 = −ℎusing 𝑥 = 𝑥𝑛+1 − 𝜓. When 𝜓 =

0, 𝑥 = 𝑥𝑛+1, 𝑦(𝑥) = 𝑦𝑛+1; if 𝜓 = −
ℎ

2
, then 𝑥 = 𝑥

𝑛+
3

2

. Hence, 𝑦(𝑥) = 𝑦
𝑛+

3

2

. If 𝜓 = −
7ℎ

9
, then 𝑥 = 𝑥

𝑛+
16

9

 and for 𝜓 = −ℎ, 

𝑥 = 𝑥𝑛+2. Hence, 𝑦(𝑥) = 𝑦𝑛+2.The four discrete schemes below are immediate 

 
 

The new Ninth Order Second Derivative Block Hybrid Linear Multistep Method (NOSDBHLMM) 

For our derivation, we used one interpolation point and ten collocation points to derive the continuous formulation of the new 

second derivative method: 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛 + ℎ [𝛽0(𝑥)𝑓𝑛 + 𝛽1(𝑥)𝑓𝑛+1 + 𝛽4

3

(𝑥)𝑓
𝑛+

4

3

+ 𝛽9

5

(𝑥)𝑓
𝑛+

9

5

+ 𝛽2(𝑥)𝑓𝑛+2]

+ℎ2 [𝛾0(𝑥)𝑔𝑛 + 𝛾1(𝑥)𝑔𝑛+1 + 𝛾4

3

(𝑥)𝑔
𝑛+

4

3

+ 𝛾9

5

(𝑥)𝑔
𝑛+

9

5

+ 𝛾2(𝑥)𝑔𝑛+2] .
    (16) 

Thus, the matrix 𝐷  becomes 

𝐷1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 𝑥𝑛 𝑥𝑛

2 𝑥𝑛
3 𝑥𝑛

4 𝑥𝑛
5 𝑥𝑛

6 𝑥𝑛
7 𝑥𝑛

8 𝑥𝑛
9 𝑥𝑛

10

0 1 2𝑥𝑛 3𝑥𝑛
2 4𝑥𝑛

3 5𝑥𝑛
4 6𝑥𝑛

5 7𝑥𝑛
6 8𝑥𝑛

7 9𝑥𝑛
8 10𝑥𝑛

9

0 1 2𝑥𝑛+1 3𝑥𝑛+1
2 4𝑥𝑛+1

3 5𝑥𝑛+1
4 6𝑥𝑛+1

5 7𝑥𝑛+1
6 8𝑥𝑛+1

7 9𝑥𝑛+1
8 10𝑥𝑛+1

9

0 1 2𝑥
𝑛+

4

3

3𝑥
𝑛+

4

3

2 4𝑥
𝑛+

4

3

3 5𝑥
𝑛+

4

3

4 6𝑥
𝑛+

4

3

5 7𝑥
𝑛+

4

3

6 8𝑥
𝑛+

4

3

7 9𝑥
𝑛+

4

3

8 10𝑥
𝑛+

4

3

9

0 1 2𝑥
𝑛+

9

5

3𝑥
𝑛+

9

5

2 4𝑥
𝑛+

9

5

3 5𝑥
𝑛+

9

5

4 6𝑥
𝑛+

9

5

5 7𝑥
𝑛+

9

5

6 8𝑥
𝑛+

9

5

7 9𝑥
𝑛+

9

5

8 10𝑥
𝑛+

9

5

9

0 1 2𝑥𝑛+2 3𝑥𝑛+2
2 4𝑥𝑛+2

3 5𝑥𝑛+2
4 6𝑥𝑛+2

5 7𝑥𝑛+2
6 8𝑥𝑛+2

7 9𝑥𝑛+2
8 10𝑥𝑛+2

9

0 0 2 6𝑥𝑛 12𝑥𝑛
2 20𝑥𝑛

3 30𝑥𝑛
4 42𝑥𝑛

5 56𝑥𝑛
6 72𝑥𝑛

7 90𝑥𝑛
8

0 0 2 6𝑥𝑛+1 12𝑥𝑛+1
2 20𝑥𝑛+1

3 30𝑥𝑛+1
4 42𝑥𝑛+1

5 56𝑥𝑛+1
6 72𝑥𝑛+1

7 90𝑥𝑛+1
8

0 0 2 6𝑥
𝑛+

4

3

12𝑥
𝑛+

4

3

2 20𝑥
𝑛+

4

3

3 30𝑥
𝑛+

4

3

4 42𝑥
𝑛+

4

3

5 56𝑥
𝑛+

4

3

6 72𝑥
𝑛+

4

3

7 90𝑥
𝑛+

4

3

8

0 0 2 6𝑥
𝑛+

9

5

12𝑥
𝑛+

9

5

2 20𝑥
𝑛+

9

5

3 30𝑥
𝑛+

9

5

4 42𝑥
𝑛+

9

5

5 56𝑥
𝑛+

9

5

6 72𝑥
𝑛+

9

5

7 90𝑥
𝑛+

9

5

8

0 0 2 6𝑥𝑛+2 12𝑥𝑛+2
2 20𝑥𝑛+2

3 30𝑥𝑛+2
4 42𝑥𝑛+2

5 56𝑥𝑛+2
6 72𝑥𝑛+2

7 90𝑥𝑛+2
8 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (17) 

 

We made the same substitutions into the 𝐷1 matrix as those used in the derivation of the first derivative method above. After 

inverting the 𝐷1 matrix premised on its non-singularity we obtained the first row of the 𝐶1 matrix from 𝐷1𝐶1 = 𝐼 which are: 

𝛼0 = 1, 
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𝛽0(𝜑) =

−9114140625ℎ10+188125000ℎ7𝜑3+12813281250ℎ6𝜑4+2877000000ℎ5𝜑5+9001562500

ℎ4𝜑6−43518750000ℎ3𝜑7−327222265625ℎ2𝜑8+17237500000ℎ𝜑9+15651562500𝜑10

1344252672ℎ9 , 

 

𝛽1(𝜑) = −

−51703125ℎ10 + 17500000ℎ7𝜑3 + 95156250ℎ6𝜑4 − 1522500000ℎ5𝜑5 − 28437500ℎ4𝜑6

−240000000ℎ3𝜑7 − 100078125ℎ2𝜑8 + 96250000ℎ𝜑9 + 59062500𝜑10

10668672ℎ8
, 

 

𝛽4
3
(𝜑) =

−3006153ℎ10 + 1632960ℎ7𝜑3 + 6735960ℎ6𝜑5 + 6919668ℎ5𝜑5 − 5154030ℎ4𝜑6

−11984760ℎ3𝜑7 − 2372895ℎ2𝜑8 + 4932900ℎ𝜑9 + 2296350𝜑10

439040ℎ8
, 

 

𝛽9
5
(𝜑) = −

−10858455ℎ10 + 14696640ℎ7𝜑3 + 29760606ℎ6𝜑4 + 551124ℎ5𝜑5 − 37384578ℎ4𝜑6

−19683000ℎ3𝜑7 + 11435823ℎ2𝜑8 + 10103940ℎ𝜑9 + 1377810𝜑10

1229312ℎ9
, 

 

𝛽2(𝜑) =

2188101ℎ10 − 53312ℎ7𝜑3 − 385896ℎ6𝜑4 − 1108380ℎ5𝜑5 − 1453466ℎ4𝜑6

−587544ℎ3𝜑7 + 554547ℎ2𝜑8 + 655060ℎ𝜑9 + 190890𝜑10

7838208ℎ9
, 

 

𝛾0(𝜑) =

−103569ℎ10 − 5376ℎ9𝜑 + 87248ℎ7𝜑3 + 269186ℎ6𝜑4 + 174720ℎ5𝜑5 − 225148ℎ4𝜑6

−358704ℎ3𝜑7 − 36057ℎ2𝜑8 + 153440ℎ𝜑9 + 64260𝜑10

5376ℎ9
, 

 

𝛾1(𝜑) =

−39289ℎ10 + 6720ℎ8𝜑2 + 38080ℎ7𝜑3 + 79170ℎ6𝜑4 + 39984ℎ5𝜑5 − 80780ℎ4𝜑6

−106080ℎ3𝜑7 − 4305ℎ2𝜑8 + 47600ℎ𝜑9 + 18900𝜑10

13440ℎ8
, 

 

𝛾4
3
(𝜑) =

−12051ℎ10 − 3808ℎ7𝜑3 − 21252ℎ6𝜑4 + 31826ℎ5𝜑5 − 3332ℎ4𝜑6 − 55884ℎ3𝜑7 − 27069ℎ2𝜑8 + 22330ℎ𝜑9 + 15120𝜑10

672ℎ9 , 

 

𝛾9
5

(𝜑) =

47541ℎ10 − 2240ℎ7𝜑3 − 15960ℎ6𝜑4 − 44436ℎ5𝜑5 − 53690ℎ4𝜑6 − 11400ℎ3𝜑7

+36435ℎ2𝜑8 + 34300ℎ𝜑9 + 9450𝜑10

2177280ℎ8 , 

 

𝛾2(𝜑) =
−7253ℎ10 + 2240ℎ7𝜑3 + 12600ℎ6𝜑4 + 21588ℎ5𝜑5 − 1330ℎ4𝜑6 − 33480ℎ3𝜑7 − 17115ℎ2𝜑8 + 13300ℎ𝜑9 + 9450𝜑10

6720ℎ8 . 

 

Having substituted the above into (16),  we obtained the continuous scheme: 
𝑦(𝜑)

= 𝑦𝑛 + [
190890𝜑10 + 655060ℎ𝜑9 + 554547ℎ2𝜑8 − 587544ℎ3𝜑7 − 1453466ℎ4𝜑6 − 1108380ℎ5𝜑5 − 385896ℎ6𝜑4 − 53312ℎ7𝜑3 + 2188101ℎ10

7838208ℎ9 ] 𝑓𝑛

+ [
64260𝜑10 + 153440ℎ𝜑9 − 36057ℎ2𝜑8 − 358704ℎ3𝜑7 − 225148ℎ4𝜑6 + 174720ℎ5𝜑5 + 249186ℎ6𝜑4 + 87248ℎ7𝜑3 − 5376ℎ9𝜑 − 103569ℎ10

5376ℎ9
] 𝑓𝑛+1

+

[
 
 
 
 
1377810𝜑10 + 10103940ℎ𝜑9 + 11435823ℎ2𝜑8 − 19683000ℎ3𝜑7 − 37384578ℎ4𝜑6

+551124ℎ5𝜑5 + 29760696ℎ6𝜑4 + 14696640ℎ7𝜑3 − 10858455ℎ10

1229312ℎ9

]
 
 
 
 

𝑓
𝑛+

4
3

+

[
 
 
 
 
15651562500𝜑10 + 17237500000ℎ𝜑9 − 32722265625ℎ2𝜑8 − 43518750000ℎ3𝜑7 + 90015625

00ℎ4𝜑6 + 28770000000ℎ5𝜑5 + 12813281250ℎ6𝜑4 + 1881250000ℎ7𝜑3 − 9114140625ℎ10

1344252672ℎ9

]
 
 
 
 

𝑓
𝑛+

9
5

− [
15120𝜑10 + 22330ℎ𝜑9 − 27069ℎ2𝜑8 − 55884ℎ3𝜑7 − 3332ℎ4𝜑6 + 35826ℎ5𝜑5 + 21252ℎ6𝜑4 + 3808ℎ7𝜑3 − 12051ℎ10

672ℎ9 ] 𝑓𝑛+2

+ [
9450𝜑10 + 34300ℎ𝜑9 + 36435ℎ2𝜑8 − 11400ℎ3𝜑7 − 53690ℎ4𝜑6 − 44436ℎ5𝜑5 − 15960ℎ6𝜑4 − 2240ℎ7𝜑3 + 47541ℎ10

2177280ℎ8 ] 𝑔𝑛

+ [
18900𝜑10 + 47600ℎ𝜑9 − 4305ℎ2𝜑8 − 106080ℎ3𝜑7 − 80780ℎ4𝜑6 + 39984ℎ5𝜑5 + 79170ℎ6𝜑4 + 38080ℎ7𝜑3 + 6720ℎ8𝜑2 − 39289ℎ10

13440ℎ8 ] 𝑔𝑛+1

+

[
 
 
 
 
2296350𝜑10 + 4932900ℎ𝜑9 − 2372895ℎ2𝜑8 − 11984760ℎ3𝜑7 − 5154030ℎ4𝜑6

+6919668ℎ5𝜑5 + 6735960ℎ6𝜑4 + 1632960ℎ7𝜑3 − 3006153ℎ10

439040ℎ8

]
 
 
 
 

𝑔
𝑛+

4
3

+

[
 
 
 
 
59062500𝜑10 + 96250000ℎ𝜑9 − 100078125ℎ2𝜑8 − 240000000ℎ3𝜑7 − 28437500ℎ4𝜑6

+152250000ℎ5𝜑5 + 95156250ℎ6𝜑4 + 17500000ℎ7𝜑3 − 51703125ℎ10

10668672ℎ8

]
 
 
 
 

𝑔
𝑛+

9
5
 

+[
9450𝜑10 + 13300ℎ𝜑9 − 17115ℎ2𝜑8 − 33480ℎ3𝜑7 − 1330ℎ4𝜑6 + 21588ℎ5𝜑5 + 12600ℎ6𝜑4 + 2240ℎ7𝜑3 − 7253ℎ10

6720ℎ8 ] 𝑔𝑛+2 

 

We evaluated the continuous scheme at 𝜑 = 0,𝜑 = −ℎ, 𝜑 =
−ℎ

3
, 𝜑 =

−4ℎ

5
. Hence, we got the four discrete schemes which is 

what makes up the block method below 

𝑦𝑛+1 = 𝑦𝑛 + [
729367

2612736
𝑓𝑛 −

34523

1792
𝑓𝑛+1 +

10858455

1229312
𝑓

𝑛+
4
3
−

3038046875

448084224
𝑓

𝑛+
9
5
+

4017

224
𝑓𝑛+2] ℎ 
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+[
15847

725760
𝑔𝑛 −

39289

13440
𝑔𝑛+1 +

3006153

439040
𝑔

𝑛+
4
3
−

17234375

3556224
𝑔

𝑛+
9
5
−

7253

6720
𝑔𝑛+2] ℎ

2 

𝑦
𝑛+

4
3

= 𝑦𝑛 + [
84121834

301327047
𝑓𝑛 −

7904576

413343
𝑓𝑛+1 +

21638

2401
𝑓

𝑛+
4
3
−

701005000000

103355177121
𝑓

𝑛+
9
5
+

7418720

413343
𝑓𝑛+2] ℎ 

+[
3655604

167403915
𝑔𝑛 −

6028672

2066715
𝑔𝑛+1 +

953684

138915
𝑔

𝑛+
4
3
−

7958000000

1640558367
𝑔

𝑛+
9
5
−

2232448

2066715
𝑔𝑛+2] ℎ2 

 
 

Convergence Analysis for the First Derivative Block Hybrid Method 

In this section, we examine the order, error constant, zero stability and convergence of the discrete schemes 

 

Order and Error Constant of the First Derivative Block Hybrid Method 

We summarize the order and error constant of the schemes derived above. We plotted the regions of absolute stability of the 

first derivative method. 

A linear difference operator 𝐿 associated with a linear multi-step method [23], 

∑𝛼𝑗

𝑘

𝑗=0

(𝑥)𝑦𝑛+𝑗 = ℎ ∑𝛽𝑗

𝑘

𝑗=0

(𝑥)𝑓𝑛+𝑗 ,for𝑗 = 0,1,⋯ , 𝑘, 

such that 𝛼0
2 + 𝛽0

2 > 0 is given by 

 
Furthermore,  

 
for 𝑝 ≥ 2. The unknown vectors from (12)–(15) are 

𝛼0 = −[

1
1
1
1

] , 𝛼1 = [

1
0
0
0

] , 𝛼4
3

= [

0
1
0
0

] , 𝛼9
5

= [

0
0
1
0

] , 𝛼2 = [

0
0
0
1

], 

𝛽0 =

[
 
 
 
 
 
 
 

5

18
202

729
1737

6250
5

18 ]
 
 
 
 
 
 
 

, 𝛽1 =

[
 
 
 
 
 
 
 

107

48
64

27
116397

50000
7

3 ]
 
 
 
 
 
 
 

, 𝛽4
3

=

[
 
 
 
 
 
 
 −

135

56

−
46

21

−
334611

175000

−
27

14 ]
 
 
 
 
 
 
 

, 𝛽9
5

=

[
 
 
 
 
 
 
 
1625

1008
8000

5103
5193

2800
125

63 ]
 
 
 
 
 
 
 

, 𝛽2 =

[
 
 
 
 
 
 
 −

17

24

−
56

81
18711

25000

−
2

3 ]
 
 
 
 
 
 
 

. 

The above formula implies: 𝐶𝑖 = 0for 𝑖 = 0,1,2,3,4,5. Since 𝐶6 is not equal to zero, the computed error constant are as shown 

in Table 1 and the order. 
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Table 1: The error constants and order of the discrete schemes that comprise the first derivative method 

yi Order Error Constatnt 

yn+1 5 2.509259259259259 × 10-3  

y
n+

4
3
 5 2.477671086724585 × 10-3  

y
n+

9
5
 5 2.529360000000000 × 10-3 

yn+2 5 2.518518518518519 × 10-3 

 

The Local Truncation Error (LTE) of order 𝑝 can be expressed in the form 

𝑇𝑛+𝑘 = 𝐶𝑝+1ℎ
𝑝+1𝑦(𝑝+1)(𝑥𝑛) + 𝑂(ℎ𝑝+2), 

and the principal local truncation error is 𝐶𝑝+1ℎ
𝑝+1𝑦(𝑝+1)(𝑥𝑛). Therefore, the LTE is 

 
 

Order and Error Constant of the Second Derivative Block Hybrid Method 

Examining the order, error constant, zero stability and convergence of the discrete schemes. 

 
A linear difference operator 𝐿 associated with a linear multi-step method , 

∑𝛼𝑗

𝑘

𝑗=0

(𝑥)𝑦𝑛+𝑗 = ℎ ∑𝛽𝑗

𝑘

𝑗=0

(𝑥)𝑓𝑛+𝑗 + ℎ2 ∑𝛾𝑗

𝑘

𝑗=0

(𝑥)𝑔𝑛+𝑗 ,for𝑗 = 0,1,⋯ , 𝑘, 

is given by 

𝐶𝑝 ∈ 𝑅𝑛and𝑦(𝑥) is any arbitrary function that is twice continuously differentiable on an interval. 

A linear multi-step method and the associated difference operator (20) is of order 𝑝 if, 𝐶0 = 𝐶1 = ⋯ = 𝐶𝑝 = 𝐶𝑝+1 = 0, 𝐶𝑝+2 ≠

0, where 𝐶𝑝+2 is the error constant of the second derivative block method. 

The following vectors were obtained from (18) 

𝛼0 = −[

1
1
1
1

] , 𝛼1 = [

1
0
0
0

] , 𝛼4
3

= [

0
1
0
0

] , 𝛼9
5

= [

0
0
1
0

] , 𝛼2 = [

0
0
0
1

] 

 

 

𝛽0 =

[
 
 
 
 
 
 
 

729367

2612736
84121834

301327047
1954322379

7000000000
34193

122472 ]
 
 
 
 
 
 
 

, 𝛽1 = −

[
 
 
 
 
 
 
 

34523

1792
7904576

413343
66838685031

3500000000
401

21 ]
 
 
 
 
 
 
 

, 𝛽4
3

=

[
 
 
 
 
 
 
 

10858455

1229312
21638

2401
22139918684883

2401000000000
177147

19208 ]
 
 
 
 
 
 
 

, 𝛽9
5

= −

[
 
 
 
 
 
 
 
 

3038046875

448084224
701005000000

103355177121
101657691

15366400
34140625

5250987 ]
 
 
 
 
 
 
 
 

 

𝛽2 =

[
 
 
 
 
 
 
 

4017

224
7418720

413343
7880266197

437500000
380

21 ]
 
 
 
 
 
 
 

, 𝛾0 =

[
 
 
 
 
 
 
 

15847

725760
3655604

167403915
76439511

3500000000
743

34020 ]
 
 
 
 
 
 
 

, 𝛾1 = −

[
 
 
 
 
 
 
 

39289

13440
6028672

2066715
5100278643

1750000000
102

35 ]
 
 
 
 
 
 
 

, 𝛾4
3

= −

[
 
 
 
 
 
 
 

3006153

439040
953684

138915
1172635726761

171500000000
46899

6860 ]
 
 
 
 
 
 
 

 

 

 

𝛾9
5

= −

[
 
 
 
 
 
 
 

17234375

3556224
7958000000

1640558367
26783163

5488000
406250

83349 ]
 
 
 
 
 
 
 

, 𝛾2 = −

[
 
 
 
 
 
 
 

7253

6720
2232448

2266715
948189159

875000000
35

38 ]
 
 
 
 
 
 
 

. 

We used the vectors above in: 
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and discovered that 𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶9 = 𝐶10 = 0 but 𝐶11 = 𝐶𝑝+2 ≠ 0. 𝐶𝑝+2is the error constant, at the point 𝑥𝑛, the 

principal truncation error is 𝐶𝑝+2ℎ
𝑝+2𝑦𝑝+2(𝑥𝑛) and the local truncation error is 

𝐿𝑇𝐸 = 𝐶𝑝+2ℎ
𝑝+2𝑦𝑝+2(𝑥𝑛) + 𝑂(ℎ𝑝+3). 

The error constants 𝐶11 as well as the order are shown in Table 2. 

 

Table 2: Table showing the error constants of the discrete schemes 

yi Order Error Constant C11 ≠ 0 

yn+1 9 3.474723014699499 × 10-8  

y
n+

4
3
 9 3.476171358147117 × 10-8  

y
n+

9
5
 9 3.478981758812616 × 10-8 

yn+1 9 3.479265090082256 × 10-8 

 

The LTE for the second derivative method is 

 
 

Region of Absolute Stability of the First Derivative Block Method 

To plot the region of absolute stability of the first derivative method, we express the new method as: 

 

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

[
 
 
 
 
𝑦𝑛+1

𝑦
𝑛+

4
3

𝑦
𝑛+

9
5

𝑦𝑛+2]
 
 
 
 

[

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

] [

𝑦𝑛+1

𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛

]
 

and𝐴 = 𝐼 ∈ 𝑅4×4 

𝐵 = [

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

], 

𝐾 =

[
 
 
 
 
 
 
 
 

107

48
−

135

56

1625

1008
−

17

24
64

27
−

46

21

8000

5103
−

56

81
116397

5000
−

334611

17500

5193

2800
−

18711

25000
7

3
−

27

14

125

63
−

2

3 ]
 
 
 
 
 
 
 
 

, 𝐺 =

[
 
 
 
 
 
 
 0 0 0

5

18

0 0 0
202

729

0 0 0
1737

6250

0 0 0
5

18 ]
 
 
 
 
 
 
 

. 

We utilized the above matrices to find the zeros of the stability polynomial 

det[(𝑤𝐴 − 𝐵 − 𝑧𝐺 − 𝑧𝑤𝐾)], 

where 𝑦′ = 𝜆𝑦, 𝑧 = 𝜆ℎ is the usual test equation, 𝜇 = 𝑒𝑖𝜃, 0 ≤ 𝜃 ≤ 2𝜋 and 𝑖 is the imaginary unit of a complex number. This 

yields the stability polynomial: 

 
We plotted the region of absolute stability of the new first derivative method using the stability polynomial above and the 

graph is shown in Figure 1. 
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Figure 1: Region of absolute stability for the new method  

 

Figure 1 shows the region of absolute stability of the first derivative block hybrid method which is A(𝛼)–stable. The stability 

region is the interior of the contour on the left half plane of Figure 1. 

 

Region of Absolute Stability of the Second Derivative Block Hybrid Method 

Here, we want to plot the graph of the absolute stability of the method for the numerical solution of IVPs. Following 

(Okuonghae & Ikhile, 2012) and as used in (Akinola & Akoh, 2024), one can write the new second derivative block hybrid 

method as  

 

 
where the matrices are respectively 

𝐸 =

[
 
 
 
 
 
 
 0 0 0 −

729367

2612736

0 0 0 −
84121834

301327047

0 0 0 −
1954322379

7000000000

0 0 0 −
34193

122472 ]
 
 
 
 
 
 
 

, 
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𝑇 =

[
 
 
 
 
 
 
 
 −

34523

1792

10858455

1229312
−

3038046875

448084224

4017

224

−
7904576

413343

21638

2401
−

701005000000

103355177121

7418720

413343

−
66838685031

3500000000

22139918684883

2401000000000
−

101657691

15366400

7880266197

437500000

−
401

21

177147

19208
−

34140625

5250987

380

21 ]
 
 
 
 
 
 
 
 

, 

𝑃 =

[
 
 
 
 
 
 
 
 −

39289

13440
−

3006153

439040
−

17234375

3556224
−

7253

6720

−
6028672

2066715
−

953684

138915
−

7958000000

1640558367
−

2232448

2066715

−
5100278643

1750000000

1172635726761

171500000000
−

26783163

5488000
−

948189159

875000000
102

35

46899

6860

406250

83349
−

38

35 ]
 
 
 
 
 
 
 
 

, 

and 

𝑀 =

[
 
 
 
 
 
 
 0 0 0 −

15847

725760

0 0 0 −
3655604

167403915

0 0 0 −
76439511

3500000000

0 0 0 −
743

34020 ]
 
 
 
 
 
 
 

. 

 

We substituted the above matrices into the characteristics equation 

det[𝑟(𝐴 − 𝑇𝑧 − 𝑃𝑧2) − (𝐵 + 𝐸𝑧 + 𝑀𝑧2)] = 0. 
Here we have that 𝑦′ = 𝜆𝑦, 𝑦″ = 𝜆2𝑦, 𝑧 = 𝜆ℎ and 𝑧2 = 𝜆2ℎ2 which are the typical test equations. The characteristic 

polynomial becomes 

 

 
We plotted the graph of the region of absolute stability making use of Newton’s method for finding the roots of the above 

stability polynomial. 

 
Figure 2: Region of absolute stability for the second derivative method 
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Figure 2 shows that the region of absolute stability of the 

stability polynomial above is A(𝛼)–Stable. The stability 

region is the part of the contour shaded in blue. We state that 

though the two new methods are A(𝛼)–stable, the second 

method has a larger region of absolute stability than the first 

method. 

 

Zero Stability of the Two Block Hybrid Methods 

Next, to ascertain the zero-stability of the two methods, we let 

z = 0 in  

det􀀀rA−B −zG−zrK 

such that det(rA−B) =  0. Since the roots of the above 

polynomial are zero and one of multiplicities three and one 

respectively, the first and second derivative methods are both 

zero stable by definition. Observe that since the order of the 

first and second derivative methods are five and nine 

respectively, they are both consistent. Besides, since both 

methods are consistent and zero-stable as shown above, the 

two new methods converges by definition (Yakubu & 

Sibanda, 2024). 

 

Numerical Experiments 

In this section, we compared the maximum absolute errors of 

the linear problem in (Henrici, 1962) which has an exact 

solution with those of the methods in this paper to see how 

accurate our solutions are; we found out that our methods 

performed better than (Henrici, 1962). This is what gave us 

the needed motivation to using it in solving the HIRES 

Problem. In comparing the results of our methods with those 

of Amat et al., (2019) on the HIRES problem, we used the 

solution provided by ode15s as the exact solution. 

 

Example 1: Linear Problem 

We consider the system [18] 
𝑝′(𝑡) = −21𝑝 + 19𝑞 − 20𝑟

𝑞′(𝑡) = 19𝑝 − 21𝑞 + 20𝑟

𝑟′(𝑡) = 40𝑝 − 40𝑞 − 40𝑟,

 

on the interval [0, 4] with [p(0), q(0), r(0)]= [1, 0,−1]and exact 

solution 

 
Result of our computational simulation can be found in Table 

3 with different step sizes and Figure 3 with a constant step 

size of  h =
1

160
. 

 

Table 3: Results of Example 1 

Steps 𝒉 Max Error Max Error Max Error Max Error 

  Yakubu& Yakubu& First Second 

  Sibanda (2024) Sibanda (2024) Derivative Derivative 

20 1

20
 

3.36× 10−03 2.64× 10−04 2.15× 10−02 4.90× 10−05 

40 1

40
 

1.18× 10−04 1.80× 10−06 2.81× 10−03 3.27× 10−07 

80 1

80
 

2.42× 10−06 1.87× 10−08 1.76× 10−04 5.07× 10−10 

160 1

160
 

4.10× 10−08 1.64× 10−10 7.83× 10−06 5.98× 10−13 

320 1

320
 

6.57× 10−10 1.34× 10−12 2.78× 10−07 2.44× 10−15 

 

 
Figure 3: Convergence plot of Example 1 against 𝑡 using the new second derivative block method 

 

Example 2 Network Problem 

Reaction rates are usually called velocities in this parlance. 

Let 𝑣𝑖, 𝑖 = 1,2,3,4,5 be the reaction rates in a given network 

graph. Suppose reaction rates are given by the following mass 

action: 

𝑣1 = 𝑘1 , 𝑣2 = 𝑘2[𝑃], 𝑣3 = 𝑘3[𝑃][𝑄], 𝑣4 = 𝑘4[𝑅], 𝑣5 =
𝑘5[𝑆].  

Let the concentrations of the corresponding species be 

𝑝, 𝑞, 𝑟, 𝑠. Given that the rate constants 𝑘1 = 3nM/sec, 𝑘2 =
2nM/sec, 𝑘3 = 2.5nM/sec, 𝑘4 = 3nM/sec, 𝑘5 = 4nM/sec, the 

species concentrations satisfy the following set of differential 

equations, expressed in nM/sec 
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𝑑

𝑑𝑡
(𝑝(𝑡)) = 3 − 2.5𝑝(𝑡)𝑞(𝑡) − 2𝑝(𝑡)

𝑑

𝑑𝑡
(𝑞(𝑡)) = 2𝑝(𝑡) − 2.5𝑝(𝑡)𝑞(𝑡)

𝑑

𝑑𝑡
(𝑟(𝑡)) = 2.5𝑝(𝑡)𝑞(𝑡) − 3𝑟(𝑡)

𝑑

𝑑𝑡
(𝑠(𝑡)) = 2.5𝑝(𝑡)𝑞(𝑡) − 4𝑠(𝑡).

 

 

All species start with initial concentrations of zero at time 𝑡 =
0. In this example, we used a constant step size ℎ = 0.01. 

Computational results are as shown in Figure 4 and Table 4.

Table 4: Results of using both First Derivative and NOSDBHLMM on Example 3 with a Constant Step Size 𝒉 = 𝟎. 𝟎𝟏 

𝒕 𝒚 New First Derivative Computed Concentrations New Second Derivative Computed Concentrations 

 𝑝(𝑡) 0.862099414 0.862098107 

1.0 𝑞(𝑡) 0.660900099 0.660901374 

 𝑟(𝑡) 0.350847134 0.350848147 

 𝑠(𝑡) 0.290777135 0.290777870 

 𝑝(𝑡) 0.767747763 0.767747605 

2.0 𝑞(𝑡) 0.781347539 0.781347684 

 𝑟(𝑡) 0.491363558 0.491363593 

 𝑠(𝑡) 0.372857774 0.372857775 

 𝑝(𝑡) 0.752529641 0.752529621 

3.0 𝑞(𝑡) 0.797194540 0.797194561 

 𝑟(𝑡) 0.499479528 0.499479529 

 𝑠(𝑡) 0.374892820 0.374892820 

 𝑝(𝑡) 0.750380222 0.750380219 

4.0 𝑞(𝑡) 0.799570984 0.799570987 

 𝑟(𝑡) 0.499949401 0.499949401 

 𝑠(𝑡) 0.374980699 0.374980699 

 

 
Figure 4: Concentrations of the species P, Q, R, S for 0 ≤ t ≤ 4 and h = 0.01 using the new derivative method 

 

Example 3: HIRES Problem 

This problem was introduced by Schaffer in 1975. It stems 

from the High Irradiance Response (HIRES) of 

photomorphogenesis on the grounds of phytochrome. The 

corresponding chemical reaction consists of 8 reactants which 

leads to the following system of stiff differential equations. 

 

𝑦1′ = −1.7𝑦1 + 0.43𝑦2 + 8.32𝑦3 + 0.0007

𝑦2′ = 1.7𝑦1 − 8.75𝑦2

𝑦3′ = −10.03𝑦3 + 0.43𝑦4 + 0.035𝑦5

𝑦4′ = 8.32𝑦2 + 1.71𝑦3 − 1.12𝑦4

𝑦5′ = −1.745𝑦5 + 0.43𝑦6 + 0.43𝑦7

𝑦6′ = −280𝑦6𝑦8 + 0.69𝑦4 + 1.71𝑦5 − 0.43𝑦6 + 0.69𝑦7

𝑦7′ = 280𝑦6𝑦8 − 1.81𝑦7

𝑦8′ = −280𝑦6𝑦8 + 1.81𝑦7,

 

Satisfying the initial conditions y= [1, 0, 0, 0, 0, 0, 0.0057]. 
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Table 5: Solution of the HIRES Problem at 𝒕 = 𝟓 and 𝒕 = 𝟑𝟓𝟎 Minutes using the New FDBHLMM 

𝒚𝑖 Amat et al FDBHLMM FDBHLMM FDBHLMM 

 Solution at 𝑡 = 5 Solution at 𝑡 = 5 Solution at 𝑡 = 5 Solution at 𝑡 = 5 

  ℎ = 0.1 ℎ = 0.01 ℎ = 0.001 

𝑦1 0.03209606 0.031957132 0.031957517 0.031957522 

𝑦2 0.00657329 0.006505570 0.006505644 0.006505645 

𝑦3 0.00464137 0.004593266 0.004593343 0.004593344 

𝑦4 0.09110392 0.089979580 0.089980189 0.089980195 

𝑦5 - 0.162306779 0.162321575 0.162321737 

𝑦6 - 0.684539117 0.684599106 0.684599764 

𝑦7 0.00572391 0.005646663 0.005646666 0.005646666 

𝑦8 0.00005439 0.000053337 0.000053334 0.000053334 

 Solution at 𝑡 = 350  Solution at 𝑡 = 350  

𝑦5 0.00053631 0.000602815 0.000602855 0.000602856 

𝑦6 0.00115496 0.001416771 0.001416857 0.001416858 

 

Table 6: Solution of the HIRES Problem at 𝒕 = 𝟓 and 𝒕 = 𝟑𝟓𝟎 Minutes using the Second Derivative Block Hybrid 

Method 

𝒚𝒊 Amat et al NOSDBHLMM NOSDBHLMM 

 Solution at 𝑡 = 5 Solution at 𝑡 = 5 Solution at 𝑡 = 5 

  ℎ = 0.1 ℎ = 0.01 

𝑦1 0.03209606 0.031962018 0.031957518 

𝑦2 0.00657329 0.006506512 0.006505644 

𝑦3 0.00464137 0.004594251 0.004593343 

𝑦4 0.09110392 0.089987280 0.089980189 

𝑦5 - 0.162495583 0.162321591 

𝑦6 - 0.685304538 0.684599169 

𝑦7 0.00572391 0.005646722 0.005646666 

𝑦8 0.00005439 0.000053278 0.000053334 

 Solution at 𝑡 = 350 Solution at 𝑡 = 350  

𝑦5 0.00053631 0.000603326 0.000602855 

𝑦6 0.00115496 0.001417876 0.001416858 

 

Table 6 summarizes the results of the HIRES problem at specific times (5 and 350 minutes), offering a comparative look at 

the performance of different numerical methods over time. 

 

Table 7: Absolute error of the HIRES problem at t = 5 and t = 350 minutes using the new FDBHLMM 

yi Amat et al (2019) 

|Error| at t = 5 

FDBHLMM 

|Error| at t = 5 

h = 0.1 

FDBHLMM 

|Error| at t = 5 

h = 0.01 

FDBHLMM 

|Error| at t = 5 

h = 0.001 

y1 1.64 × 10−04 2.54× 10−05 2.58 × 10−05 2.58 × 10−05 

y2 7.28 × 10−05 5.08× 10−06 5.15 × 10−06 5.16 × 10−06 

y3 5.21× 10−05 3.95 × 10−06 4.03 × 10−06 4.03 × 10−06 

y4 1.21× 10−03 9.05 × 10−05 9.11 × 10−05 9.12 × 10−05 

y5 - 4.87 × 10−05 3.39 × 10−05 3.37 × 10−05 

y6 - 1.52 × 10−04 9.29 × 10−05 9.22 × 10−05 

y7 7.73× 10−05 4.04 × 10−09 7.04 × 10−09 7.04 × 10−09 

y8 1.05× 10−06 4.04 × 10−09 7.04 × 10−09 7.04 × 10−09 

 |Error| at t = 350  |Error| at t = 350  

y5 6.67× 10−05 1.65 × 10−07 1.25 × 10−07 1.24 × 10−07 

y6 2.62× 10−04 4.07 × 10−07 3.21 × 10−07 3.20 × 10−07 
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Table 8: Absolute error pf the HIRES problem at t = 5 and t = 350 minutes using the second derivative block hybrid 

method 

yi Amat et al (2019) 

|Error| at t = 5 

NOSDBHLMM 

|Error| at t = 5 

h = 0.1 

NOSDBHLMM 

|Error| at t = 5 

h = 0.01 

y1 1.64 × 10−04 3.03× 10−05 2.58 × 10−05 

y2 7.28 × 10−05 6.02 × 10−06 5.15 × 10−06 

y3 5.21× 10−05 4.94 × 10−06 4.03 × 10−06 

y4 1.21× 10−03 9.82 × 10−05 9.11 × 10−05 

y5 - 1.40 × 10−04 3.39 × 10−05 

y6 - 6.13 × 10−04 9.28 × 10−05 

y7 7.73× 10−05 6.30 × 10−08 7.04 × 10−09 

y8 1.05× 10−06 6.30 × 10−08 7.04 × 10−09 

 |Error| at t = 350 |Error| at t = 350  

y5 6.67× 10−05 3.46 × 10−07 1.25 × 10−07 

y6 2.62× 10−04 6.98 × 10−07 3.20 × 10−07 

 

 
Figure 5: Solution of the HIRES problem at t = 5 min for y1, y2, y3, y4 

 

 
Figure 6: Solution of the HIRES problem at t = 5 min for y5, y6, y7, y8 
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Figure 7: Solution of the HIRES problem at t = 350 min for y5, y6 

 

Discussion of Results 

In this paper, we presented two block hybrid methods with 

non-equidistant grid points. The FDHBLMM is a fifth–order 

first derivative block hybrid method with a small region of 

absolute stability, while the second method NOSDBHLMM 

is of ninth–order with a large region of absolute stability. Both 

methods are A(a)–stable, zero-stable, consistent and 

convergent. In actual fact, the NOSDBHLMM is an extension 

of the FDHBLMM; which gives better approximations to the 

exact solution though it involves more function evaluations. 

However, the FDHBLMM is faster because it has less 

function evaluations per block suffers the ’disadvantage’ of 

not being as accurate as the NOSDBHLMM. The better 

accuracy of NOSDBHLMM is due to its larger region of 

absolute stability as well as smaller error constant than the 

FDHBLMM.  

Figure 3 shows the convergence plots for Example 3.1 against 

time. These plots demonstrate how the numerical solutions 

approach the exact solution over time. Besides this, column 

six of Table 3 shows that the new NOSDBHLMM had the 

smallest maximum absolute error when compared to the two 

methods of Yakubu and Sibanda (2024). This confirms the 

accuracy of our new method for the solution of first order 

linear IVPs. Table 4 and Figure 4 shows the table and figures 

after applying the new methods in solving the Network 

problem in Example 3.2. The solution of our methods 

coincide to a greater extent with those of ode15s. 

Figures 5 to 7 present the results of the HIRES problem at 

different times (5 minutes and 350 minutes) for different 

species with varying step sizes (h = 0.1, 0.01, 0.001). These 

figures are crucial in comparing how different step sizes affect 

the numerical solution of the HIRES problem in comparison 

to those of Amat et al (2019) and ode15s. Figure 5 shows the 

trajectory of the solution of our new NOSDBHLMM when 

superimposed with those of ode15s for y1, y2, y3, y4 while 

Figure 6 depicts those for y4, y5, y6, y7 at time t = 5 minutes. 

Furthermore, we did the same thing at time t = 350 minutes 

for y5 and y6 in accordance with Amat et al., (2019), albeit 

Amat et al (2019) did not compare their solution with the well 

known stiff solver ode15s. 

In Tables 5 and 6, we present the solution of the HIRES 

problem at t = 5 and t = 350 minutes 

Using Amat et al. (2019) variational method, new 

FDHBLMM and NOSDBHLMM methods respectively. The 

dash in all the tables signifies that the values were not 

available in the literature. Table 7 shows a comparison of the 

absolute error of the HIRES problem at t = 5 and  

t = 350 minutes using Amat et al., (2019) and the new 

FDBHLMM for h = 0.1, h = 0.01, h = 0.001. The table showed 

that the new method outperformed those in [16]. Similar 

results can be seen in Table 8 for h = 0.1 and h = 0.01. Due to 

the computational time involved, for h = 0.001 we could not 

compute the solution using the NOSDBHLMM. As stated 

earlier, for the purpose of our comparison, we used the 

solution provided by ode15s as the exact. The good 

performance of our method when compared to the variational 

method in Amat et al., (2019) shows that our method is 

reliable and can be applied in solving both linear and 

nonlinear IVPs. 

 

CONCLUSION 

This article successfully developed and analyzed first and 

second-order methods for solving the 

HIRES problem in photovoltaic cells. By focusing on the 

stability and convergence of these methods, it was 

demonstrated that the proposed algorithms provide significant 

improvements over traditional numerical methods. The first-

order method adapted to fluctuating irradiance levels, 

enhancing stability and reducing computational cost. Moreso, 

the second-order method improved accuracy and stability that 

makes it suitable for long-term simulations. The results 

indicate that the new methods are robust and capable of 

handling the challenges associated with high irradiance 

conditions. The convergence plots and stability analysis 

confirm that these methods are reliable for practical 

applications. The numerical experiments showed that the 

proposed methods outperform existing techniques, providing 

more accurate and stable solutions. 
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