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ABSTRACT

This article presents two A(a), zero—stable, consistent and convergent methods for the numerical approximation
of the High Irraddiance problem. The first method is a first derivative method while the second method is a
second derivative block hybrid method for the numerical solution of initial problems most especially the High
Irraddiance (HIRES) problem with origins from chemical kinetics. The first method is of order five with a small
region of absolute stability, while the new second derivative method is of order nine with a large region of
absolute stability as well as smaller error constants. The methods stems from the interpolation and collocation
approach with un-equidistant give points. Sequel to using the methods in solving the HIRES problem which
has no exact solution, we compared the performance of our second method with a method in a recent literature
and the method outperformed it. This gave us the motivation in using the method to solve the problem under

consideration.
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INTRODUCTION

Large-scale chemical kinetics simulations are fundamental to
understanding complex reactive systems in scientific and
engineering domains such as combustion modeling (Zhang et
al,. 2022; Lu & Law, 2009) atmospheric chemistry (Mashruk
et al, 2024), nuclear fusion (Jacobson, 2005), and
astrophysical processes (Simon et al., 2007). One particularly
demanding area is the High Irradiance (HIRES) problem,
which involves modeling chemical transformations in
environments subjected to intense radiation fields, such as in
high-power laser systems or solar plasma phenomena. These
scenarios are characterized by extremely rapid reaction
dynamics, highly stiff differential systems, and extensive
reaction networks, often involving thousands of chemical
species and reaction pathways (Trieschmann et al., 2023;
Bennett et al., 2011). Conventional numerical methods—both
explicit and implicit—encounter severe challenges when
applied to the HIRES problem. Explicit solvers are restricted
by the stiffness of the chemical kinetic equations,
necessitating extremely small-time steps, while implicit
methods, though stable, involve complex matrix operations
that scale poorly with system size (Hawagfeh & Kaya, 2004;
Abdullahi, 2018). To overcome these issues, researchers have
proposed Block Hybrid Methods—a family of numerical
integrators that blend the features of multistep and Runge-
Kutta schemes, enabling enhanced accuracy and stability
while maintaining computational tractability (Rufai, 2024;
Singh et al., 2021). Block hybrid methods allow for the
simultaneous computation of multiple solution points within
a time step, improving parallelizability and offering flexibility
in handling stiff reactions. These advantages become
particularly useful in the HIRES context, where
computational intensity and accuracy must be tightly
balanced. Recent innovations in computationally efficient
block hybrid methods have incorporated techniques such as
adaptive time-stepping (Spiteri, 1997), Jacobian sparsity
exploitation, and high-performance linear algebra routines to
reduce overhead and improve scalability on parallel
computing architectures (Kowalski et al., 2021; Castro et al.,
2024). In their pioneering work, Smith and Anderson (Smith
& Anderson, 2005) addressed the computational difficulties

posed by high irradiance in photovoltaic cells by developing
a first-order HIRES method. Their approach involved
adjusting the step size of the numerical solution in response
to the irradiance levels, thereby enhancing stability. This
method represented a significant improvement over
traditional Euler methods, particularly in scenarios where
irradiance changes rapidly. They developed a first-order
numerical method that adapts to high irradiance conditions,
ensuring both stability and accuracy. However, their method
is of first-order, but in this paper, we present two block
methods for the numerical solution of the HIRES problem.
Recently the problem was also solved using the variational
method and the numerical solution of the HIRES problem at
five minutes. At this time, six solutions were obtained and at
three hundred and fifty minutes for the remaining two (Amat
etal., 2019).

Amat et al (2019) presented the numerical solution of the
HIRES problem for different concentrations at different time
intervals. Stiff systems of ODEs face severe time step
restrictions, especially for large simulation times. The new
variational method proposed by Amat et al (2019) has been
successfully applied to stiff ODEs arising from chemical
reactions with large systems. The variational method has the
advantage of never getting stuck at local minima and always
converges to the solution regardless of the initialization,
unlike implicit Runge-Kutta methods. Nevertheless, the
solutions they gave was not compared with any other methods
in the literature. Here, we compared our solution to the HIRES
problem with the well known stiff ODE solver odel5s for
different step sizes; and our results are promising. This study
explores the development and application of computationally
efficient two block hybrid methods for simulating large-scale
chemical kinetics under high irradiance conditions. By
tailoring these advanced numerical schemes to the unique
demands of the HIRES problem, this work aims to establish a
reliable and scalable framework capable of handling the
mathematical and computational complexities inherent in
such simulations.
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MATERIALS AND METHODS k ‘ k ‘
A k-step first and second derivative block hybrid linear a;(x) = Z aj i1 x7,Bi(x) = Z Bjj+1x7,
multistep methods for the numerical solution of ordinary =0 =0
differential equation are respectively (Lambert, 1973): and
y(x) =Z?=o & Yn+j +h2?=0ﬁjfn+j' (1) k ) ]
and yi(x) = Zyj‘jﬂ xJ forj =0(1) -,k — 1.
y(x) = Z?:o Qj Yntj + hZ?zo Bj fo+j + h? 25‘{:0 Vi In+j» j=0 . . .
Q) The following matrix equation PQ = I, is solved where | €
where the a;, 8; and y;’s are unknown polynomials, RUFMX(E+m) s an identity matrix, P and Q are real

(t + m) x (t + m) matrices (t interpolation points 0 < t <
k) and m collocation points, to obtain a;(x), 5;(x) and y;(x)
which are the first rows of @ (Onumanyi et al., 1994).

Yn+j = ¥(xy + jh), is an approximate solution
y’(xn+j) = fn+j = f(xn +jhry(xn +jh-))'
and

y”(xn+j) = f1;+j = f’(xn +jh'3’(xn +jh)) = 9n+j-
Besides, the continuous coefficients are

Derivation of the New First Derivative Hybrid Block Linear Multistep Method (FDHBLMM)

. o 49 b—
Let ¥y, =y(xpand fr = f(xn, V), Vi = Y(Xngi) = y(xn + ih), for x; =xo +ih,i € {1'§’E‘ 2}, h= Ta'fn+i =
F Gt Ynsi) = f(xn + ih,y(x, + ih)). By making the substitution t = 1,m = 5 and the above into equation (1), we
obtained the continuous formulation:

y(@x) = ao(x)y, +h [ﬁo G fn + BL() frpr + () 2 + ﬁﬁ(x)fwr% + B2 () frsz | (3)
3 3 5
The matrix P becomes:
1 x, x2 x3 Xy x5 ]
0 1 2x, 3x2 4x3 5xp
0 1 2xn41 3x741 4% SXpar
_ 2 3 4
P=10 1 2x, i 3xn+§ 4xn+§ 5xn+§ . C))
2 3 4
0 1 2x, +§ 3xn+§ 4xn+§ 5xn+§

2 3 4
L0 1 2xp42 3Xp42 4Xpso 53‘Cn+2}—1 .
. . 4 .
By replacing x,with X1 — R, X 4 = X409 + 3 X2 = Xnp1 0 Xnez = Xngg h, the P matrix reduces to:
3

n+2
1 xp1—h (xp41 _h}g (Xn+1 —h)? (Xni1 _h}:l (Xn+1 _h}s 1
0 1 2(xy—h)  B(xp —h)* Axp =) B(xyq —h)*

2 3 1
0 1 241 3:(”+1 4xu+] 5,4
pP= (5)
0 1 2(xp41+ ljh} 3(xn+1+ %h}z 4(xp+1+ _Jihjls 5(Xp+1+ %FIJ“
0 1 2xpir+ 2h) 3(xpaq+ M2 4(xpeq + 2h)P 5(xypq + 2h)4
2 5 5 n+1 5

10 1 2xps1+h) 3(xper+h)? dxpp+h)? 5(xugq +h)E

The determinant of the matrix above is 335% h1°. The determinant of P is non—zero if and only if 335% h1% is non—zero or h # 0.

Now, we invert P using PQ = I where [ is an identity matrix of size six by six. The first row of Q gives the continuous
coefficients;

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 83 —97

84



ACCURATE BLOCK HYBRID METHODS... Akinola et al.,

FJS

ap =1 (6)
. 305 L8t L Th2wd 1+ 23 w? _20K5
Bo(¥) = L ntg o of )
. 5 B1het— a4k e? 1020302 — a8hte+107H0
B1(y) _ 36y +51hy 4r¢48:£r.; 48hty+107h ®)
81y°+81hy* —135h%y> —162k%p? +-135K°
Bsly) =t e e ©)
5 ensh gt o 2.3 - 342 0 169505
,3-% (p) = 15009 +625hy _5;)325;:4 125007 y? +1625h (10)
. 18¢° 4+ 3hy* —26h% 9> — 12k g2+ 17H°
Ba(¥) = Sy ey e e (11)
Plugging the above into (3), the continuous formulation below is immediate
(3y™ + 8hypt* + 7hZp> + 2R3 — 20K°) |
Y(x) = yu — & Y ¥ ‘!4 ¢ }_f”
72h
(36y° + 51hy* — 44h2y> — 10203y? — 48h*y + 107h°)48h*
f n1
_ (81¢° + 81hy* — 135h%y® — 162h°y* + 135h°)56h*
f n+2
, (1500¢° + 625hp* — 2500h* > — 1250h%¢* + 1625h°) £
100874 Tn+3
(18¢° 4 3hy* — 26h%y> — 120°3p? + 171°) _
- 24}{._1 _fiu+2-
We evaluated the continuous formulation above at ¢ = 0,y = —%,1/) = —g and ¢ = —husing x = x,41 — Y. Whenyp =
. h 7h
0,x = Xpy1, V(%) = Ypaqs ifp = — 5 thenx = xn+%. Hence, y(x) = yn+§. Ify = - thenx = xn+1?s and for ¢ = —h,
X = Xp4,. Hence, y(x) = y,4,.The four discrete schemes below are immediate
r5 107 135 1625 _ 17
Yn+1 = YWn + _E_fi‘! -+ E_fi‘!-l—'] - ﬁ-f?!+% -+ m'f“_% - ﬂ_fu—z h (12)
(202 _ 4 46 _ 8000 _ 56 _
y“+_~_;.l = ¥n + _729}'?1 + Efu+] - ﬁ,f”_,_% + m,f”_h% — ﬁ,fﬁ+2:| h (13)
oy |37, 116397 . 336l 5193 1871l T, 14
Ynig = ¥n T | g250/" T Boooo /"' T 175000 n+% T 2800/ n+2 T 250007 "2
5y . 7 27 125 . 2 _
Yn+z = Yn + i;_fu + §_fu+1 - ﬁf'“_'_;'-l -+ ﬁ-fu+§ - §_f'?1+2:| h. (15)

The new Ninth Order Second Derivative Block Hybrid Linear Multistep Method (NOSDBHLMM)

For our derivation, we used one interpolation point and ten collocation points to derive the continuous formulation of the new

second derivative method:

Y0 = €oCOYn + B [Bo(Ofu + GO s + BeCOS 2+ RGOS 2+ Bo (e

+h? [7/0 () gn + V1) Gns1 +v2(x) g, 2 +vo(0)g, .2 + V2 (x)gm] :
3 3 5 5
Thus, the matrix D becomes

1 x, x2 x3 X x5 x8 x5 x8 x5 x50
0 1 2x, 3x? 4x3 5xp} 6x5 7x8 8x/ 9x8 10x,
0 2np1 3G AXme SXper 6Xpr Txna 8xnu 9xnyg 10xp,,
2 3 4 5 6 7 8 9
0 2x, 4 3xn+§ 4xn+§ 5xn+§ 6xn+§ 7xn+§ 8xn+§ 9xn+§ 10xn+§
2 3 4 5 6 7 8 9
0 1 2x, + 3xn+§ 4xn+§ 5xn+§ 6xn+§ 7xn+§ 8xn+§ 9xn+§ 10x -
Dy=10 1 2xp4; 3%z 4%042  Sxpya  6Xny  TXne 8%y 904, 10X,
0 0 2 6x, 12x2  20x3  30x}  42x;  56x8  72x]  90x%
0 0 2 6Xpq 12x2,, 20x3,, 30x}., 42x>,, 56x8., 72x7,, 90x%,,
0 0 2 6bx,: 12x2, 20x’. 30x'. 42x> . 56x°. 72x . 90x° .
3 TL+§ Tl+; TL+§ n+§ n+- n+- n+-
2 3 4 5 6 7 8
0 0 2 6xn+§ 12xn+§ 20xn+§ 30xn+§ 42xn+§ 56x) o 72xn+§ 90xn+§
0 0 26Xy, 12x2,, 20x3,, 30xk., 42x5,, 56x8., 72x7,, 90x5,,l]

(16)

(17

We made the same substitutions into the D; matrix as those used in the derivation of the first derivative method above. After
inverting the D; matrix premised on its non-singularity we obtained the first row of the C; matrix from D,C; = I which are:

ap =1,
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—9114140625h1°+188125000h7 3+12813281250h°@*+2877000000h°¢5+9001562500
Bo(@) = h*p®-43518750000h3¢p7 —327222265625h%p8+17237500000h¢°+15651562500¢10
ol¢¥ 1344252672h° ’

—51703125h1° 4+ 17500000h7 > + 95156250h°p* — 1522500000h°p° — 28437500h*¢°®
—240000000h3¢p” — 100078125h%® + 96250000h¢° + 59062500¢°

bilo) =~ 10668672h° '
—3006153h° + 1632960h7 > + 6735960h°p> + 6919668h°¢> — 5154030h*¢°®
Ba(p) = —11984760h%¢” — 2372895h%@® + 4932900h¢° + 2296350¢1°
2= 4390401 '
—10858455h° + 14696640h7 03 + 29760606h°p* + 551124h5¢> — 37384578h*p°
Bo(g) = — —19683000h%¢” + 11435823h%¢® + 10103940h¢° + 1377810¢*°
)= 1229312h° '
2188101h'° — 5331217 % — 385896h°¢p* — 1108380h°p° — 1453466h* ¢°
8,(0) = —587544h3¢” + 554547h%¢® + 655060h¢° + 190890¢*°
29 = 7838208h° '
—103569h1° — 5376h%p + 87248h7 % + 269186h°p* + 174720h5 @5 — 225148h* "
() = —358704h3¢7 — 36057h%@® + 153440h¢° + 64260¢™°
Yolp) = 5376h° '
—39289h1° + 6720h%p? + 38080h7 @3 + 79170h°p* + 39984h°p> — 80780h*°
) = —106080h3¢7 — 4305h%@® + 47600h¢® 4+ 18900¢™°
nie)= 13440h° '
—12051h° — 3808173 — 21252h%¢* + 31826h5¢p°> — 3332h*p® — 55884h3p” — 27069h%@® + 22330he° + 15120¢*°
vale) = 6721° ’
3
47541h° — 2240h7 @3 — 15960h®p* — 44436h%p> — 53690h*® — 11400h3¢”
(@) = +36435h%¢® + 34300h¢° + 9450¢1°
yele) = 2177280h8 '
@ —7253h% + 2240h7 3 + 12600h°p* + 21588h°p° — 1330h*p® — 33480h3¢p” — 17115h2¢® + 13300h@° + 9450¢1°
Y2\@) = .

6720h8

Having substituted the above into (16), we obtained the continuous scheme:

. 190890910 + 655060hg° + 554547 h%p® — 587544h%¢p7 — 1453466h* S — 1108380h5¢° — 385896h6¢* — 5331217 ¢ + 2188101A10

=Yn 7838208h° "
. 6426000 + 153440h¢° — 36057h2@® — 358704h%p” — 225148h*p® + 174720h5¢5 + 249186h°p* + 87248k > — 5376h°¢p — 103569h1°]
5376h° il

13778109 + 10103940h¢° + 11435823h%¢p® — 19683000h3¢” — 37384578h*p°®
+551124h%¢°% + 29760696h°p* + 14696640h7 3 — 10858455h1°
1229312h°

+
—

n+§

1565156250001 + 17237500000h¢p° — 32722265625h2p8 — 43518750000h%¢7 + 90015625
00h*@® + 28770000000h5p5 + 12813281250hp* + 1881250000~ p® — 9114140625h1°

+ 1344252672h° n+

wilo

1512091 + 22330h¢® — 27069h%¢8 — 55884h3¢7 — 3332h* @S + 35826h5¢p5 + 21252h¢* + 3808h7 93 — 12051h10
672h° n+2
[94—50(p1° + 34300h¢° + 36435h2p8 — 11400h3p7 — 53690h* b — 44436h5p5 — 15960h8p* — 2240h7 o3 + 47541110

+

2177280k8 In
1890090 + 47600h¢° — 4305h2p® — 106080h3p” — 80780h*p® + 39984R5¢S + 79170hC@* + 38080h7 3 + 6720h8p? — 39289A1°
13440h° ]g"“
2296350010 + 4932900h¢° — 2372895h%¢8 — 11984760h%¢7 — 5154030h*p®
+6919668h°¢° + 6735960h5p* + 1632960h7 p° — 3006153110
4390401° Inst

+

+

590625000 + 96250000h¢° — 100078125h%¢® — 240000000h3¢7 — 28437500h"p°
+152250000h%¢5 + 95156250h%¢* + 17500000h7 p3 — 51703125h1°

+ 10668672h° Insd

9450¢1° + 13300h¢° — 17115h%¢® — 33480h%¢” — 1330h*p® + 21588h5¢° + 12600h5¢* + 2240h7 3 — 7253110
+ 6720h° Gnt2

il

We evaluated the continuous scheme at ¢ = 0, = —h, @ = TP = %h. Hence, we got the four discrete schemes which is

what makes up the block method below
729367 34523 10858455 3038046875 4017

= - - — h
Yne1 = Yn ¥ [2612736f" 1792 fusr + 1229312 fn+% 448084224 fn+§+ 224 fs2

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 83 —97

86



ACCURATE BLOCK HYBRID METHODS... Akinola et al., FJS

15847 39289 3006153 17234375 7253 ,
+ [725760 9n ~ 133409 ¥ 239040 In+t ~ 3556224 Ined ﬁg"*z]
84121834 7904576 21638 701005000000 7418720
Yuit =Yt 301327047 ~ 213343 /711 T 2201 /et T 103355177121 et T 413343 f"“]h
3655604 6028672 953684 7958000000 2232448 ,
1674039159 ~ 2066715 9"+ * 138915 In+t ~ 1640558367 In+d ~ 20667159’”2]
1954322379 . 66838685031 22139918684883
Ynig =Yn [?000000000- "~ 73500000000 /" ! " 2401000000000 /" +3
101657691 7880266197 76439511 5100278643
~ 15366200 /7 +2 * 237500000 /" 2] i [3-;000000003“ ~ 17500000005" "
1172635726761 26783163 948189159
~ 171500000000 Sn+4 ~ 5488000 Sn+2 mgm} " (18)
34193 401 _ 177147 34140625 _ 380
Ynt2 = Yn + {m n— ﬁ_fﬂ—'l To208 [n+% ~ S50087 [n+d fn+ }
743 102 46899 406250 a8 ,
[mgu — ¥8a1+1 - %8”4_% — MS;J_F% — ERH+2}F 2

Convergence Analysis for the First Derivative Block Hybrid Method
In this section, we examine the order, error constant, zero stability and convergence of the discrete schemes

Order and Error Constant of the First Derivative Block Hybrid Method
We summarize the order and error constant of the schemes derived above. We plotted the regions of absolute stability of the
first derivative method.

A linear difference operator L associated with a linear multi-step method [23],
K

Z a; (x)yn+} = hZB] (x)f-,H.],fOI'] =01,k
j=0
such that a? + B2 > O is given by

k

Lly(x);h] =}

j=0
= Coy(x)+ CrhyV(x) + -+ + CplPy P (x) +

ajy(x + jlt) — hgy' (x + jh) (19)

Cp's are real and y(x ) is any arbitrary function which is continuously differentiable on an interval.

Definition 2.1. A linear multistep method and the associated difference operator (19) is of order pif,

Co=Cy=---=Cp=Cpu1 #0, where Cp.y is the error constant of the method.
Furthermore,
k
Co =3 ay
i=0
k
= 3 (s — B4)
=1

k. riPa Ly
Cp = i ,%)’
D G R V]

for p = 2. The unknown vectors from (12) (15) are

1 1 [0 0

1”77 |o|’ o‘g 1' ol

1 0 0 0 1
S5 -

4
3
107 - - 135 16257 - 17 1
18 48 56 1008 24
202 64 46 8000 56
_| 729 | 27 | 21 _|5103 | &1
Bo =1737|"P1 = 116397 'ﬂg— 334611 '53‘ 5193] P2 =|18711
6250 50000 175000 2800 25000
5 7 27 125 2
18 | 3 L "1z 63 3

The above formula 1mp11es C = Ofori = 0,1,2,3,4,5. Smce Ce is not equal to zero, the computed error constant are as shown
in Table 1 and the order.
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Table 1: The error constants and order of the discrete schemes that comprise the first derivative method

yi Order Error Constatnt

Vnt1 5 2.509259259259259 x 103

Yok 2.477671086724585 x 1073
3

] 5 2.529360000000000 x 103
5

Yn+2 5 2.518518518518519 x 1073

The Local Truncation Error (LTE) of order p can be expressed in the form
Tk = Cp+1hp+1y(p+1) (xn) + 0(hp+2)'
and the principal local truncation error is Cpﬂherl y®+D(x,,). Therefore, the LTE is

Ty.i2 = [2.5093,2.4777,2.5294,2.5185]T x 10~ h®y(®) (x,) + O(K7).

Order and Error Constant of the Second Derivative Block Hybrid Method

Examining the order, error constant, zero stability and convergence of the discrete schemes.

L[y(x); h]

Sy

j=0

= Coy(x) + Crhy!

() +

{a,-y(x i) — W (x + ) — oy (x4 i)

S C},hi’yipl(x) +

A linear difference operator L associated w1th a linear multi-step method ,

k

z a; (x)yn+} = hzﬁj (x)fn+} + h? ZV] (x)gnﬂ'for] =01,k

j=0

is given by

C, € R™andy(x) is any arbitrary function that is twice continuously differentiable on an interval.

(20)

A linear multi-step method and the associated difference operator (20) is of order p if, Cy = C; =
0, where C, ., is the error constant of the second derivative block method.
The following vectors were obtained from (18)

Po

B2

ni|©

We used the vectors above in:

7000000000

437500000

T

729367

2612736
84121834

301327047
1954322379

34193

122472
4017

224
7418720

413343
7880266197

380
21

r 17234375 1

3556224
7958000000

1640558367
26783163

5488000
406250

B

L 83349

as =
3

Yo =

3500000000

1 o =
o|'"2
0

34523

1792
7904576

413343
66838685031

401

L 21
15847
725760

3655604

167403915
76439511

743
34020

6720
2232448

2266715

875000000
35

7253 ]

948189159

38

I

3500000000

Y1 ==

= o O o

=
[MES

|

1750000000

10858455

21638
2401

177147

L 19208
39289 1

13440
6028672

2066715
5100278643

102
35 b

1229312

=
[NES

22139918684883
2401000000000

=

w1 ©

3006153

439040
953684

138915

1172635726761
171500000000

46899
6860

r 3038046875 1

448084224
701005000000

103355177121
101657691

15366400
34140625

5250987

= Cp = Cp+1 = 0, Cp+2 *
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k
CD = Z &g,
i=0
k k
C1=Y iy =Y Bi
iz i=0
- ko2 .
G = ; (E“ﬂ _I,Bi):
c—li'f" 1 t.p_l‘ 1 i.q_g‘ -
aLt s B gyt 123
and discovered that Co = C; = C; = =+ = Cg = C19 = 0 but Cy; = Cpip # 0. Cp,is the error constant, at the point x,, the

principal truncation error is Cp4 hP*+2yP+2(x Y and the local truncation error is
LTE = Cpy,hP*2yP*2(x,) + O(hP*3).
The error constants C;4 as well as the order are shown in Table 2.

Table 2: Table showing the error constants of the discrete schemes

yi Order Error Constant C;; # 0

Yn+1 9 3.474723014699499 x 1078

Yok 9 3.476171358147117 x 108
3

] 9 3.478981758812616 x 1078
5

Yn+1 9 3.479265090082256 x 1078

The LTE for the second derivative method is

LTE = [3.4747,3.4762,3.4790,3.4793]" x 10781y (x,,) + O(h'2).

Region of Absolute Stability of the First Derivative Block Method
To plot the region of absolute stability of the first derivative method, we express the new method as:

1000§”+10001yn+1
01 0 off’n+3] |0 0 0 1||yn+z
00 1 of|v,2| [0 0 0 1]|ynes
0o o o uf, >l 'lo o o 1l wm
n+2
andA = I € R¥*4
0 0 0 1
o 0o 0 1
B=10 0 0 1|
00 0 1
- 107 135 1625 17 000 2
48 56 1008 24 18
64 46 8000 56 0 0 o0 202
K=l 27 21 5103 81 | ;= 729
116397 334611 5193 18711 0 o o 737
5000 17500 2800 25000 6250
7 27 125 2 000 O
3 14 63 3 | 18 |

We utilized the above matrices to find the zeros of the stability polynomial

det[(WA — B — zG — zwK)],

where y' = Ay, z = Ah is the usual test equation, u = e, 0 < # < 2m and i is the imaginary unit of a complex number. This
yields the stability polynomial:

(36pt — 20z — (2025 —321%)2% 4 (621p* — 213;%)22 — (1104
+69611%)z +9003:* — 9003:°]

el z) = 900

We plotted the region of absolute stability of the new first derivative method using the stability polynomial above and the
graph is shown in Figure 1.
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Im(z)

Figure 1: Region of absolute stability for the new method
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Re(z)

FJS

Figure 1 shows the region of absolute stability of the first derivative block hybrid method which is A(a)-stable. The stability
region is the interior of the contour on the left half plane of Figure 1.

Region of Absolute Stability of the Second Derivative Block Hybrid Method

Here, we want to plot the graph of the absolute stability of the method for the numerical solution of IVPs. Following
(Okuonghae & Ikhile, 2012) and as used in (Akinola & Akoh, 2024), one can write the new second derivative block hybrid

method as
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where the matrices are respectively

000
00
E =

00
00

729367

" 2612736
84121834

"~ 301327047
1954322379

" 7000000000
34193

T 122472
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r 34523 10858455 3038046875 4017 7
1792 1229312 448084224 224
7904576 21638 701005000000 7418720
T = 413343 2401 103355177121 413343
66838685031 22139918684883 101657691 7880266197
3500000000 2401000000000 15366400 437500000
401 177147 34140625 380
L 21 19208 5250987 21 g
r 39289 3006153 17234375 7253 ]
13440 439040 3556224 6720
6028672 953684 7958000000 2232448
p= 2066715 138915 1640558367 2066715
5100278643 1172635726761 26783163 948189159
1750000000 171500000000 5488000 875000000
102 46899 406250 38
L 35 6860 83349 35
and
0 0 15847
725760
3655604
0 0 -
M= 167403915
0 0 76439511
3500000000
00 0 743
34020

We substituted the above matrices into the characteristics equation

det[r(A—Tz—Pz?)— (B+ Ez+ Mz?)] = 0.
Here we have that y' = Ay,y" = A%2y,z = Ah and z? = A?h? which are the typical test equations. The characteristic
polynomial becomes

((648r% — 2r3)z8 4 (—(10908r) — 96r3)z7 + (105918r* — 2388r)z6
+ (—(726570r%) — 37560r°)z° + (3697965 — 399285r°)z*
51030000

(—(13906620r*) — 2896740r%)2° + (36978480r" — 13844880r%)22
4+ (—(62596800r%) — 13844880r2)z 4 51030000r — 51030000r3)
51030000 '
Differentiating o(r, z) partially with respect to z;

(8(648r% — 2r3)27 +7(—{10908r) — 96r7)25 4 6(105918r4 — 2388r%)2°
+ 5(—(726570r4) — 3756013)z4 + 4(3697965r4 — 399285r3)z3
51030000

dplr,z) B
dz

3(—(13906620r") — 2896740r)z2 + 2(36978480r*
— 13844880r3)z 4 (—(62596800r%) — 13844880r)
51030000 ’
We plotted the graph of the region of absolute stability making use of Newton’s method for finding the roots of the above
stability polynomial.

10

(
o

Im

-2 0 2 4 6 8 10 12
Re(z)

Figure 2: Region of absolute stability for the second derivative method
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Figure 2 shows that the region of absolute stability of the
stability polynomial above is A(a)-Stable. The stability
region is the part of the contour shaded in blue. We state that
though the two new methods are A(a)-stable, the second
method has a larger region of absolute stability than the first
method.

Zero Stability of the Two Block Hybrid Methods

Next, to ascertain the zero-stability of the two methods, we let
z=01n

detllrA—B —zG—zrK

such that det(r4—B) = 0. Since the roots of the above
polynomial are zero and one of multiplicities three and one
respectively, the first and second derivative methods are both
zero stable by definition. Observe that since the order of the
first and second derivative methods are five and nine
respectively, they are both consistent. Besides, since both
methods are consistent and zero-stable as shown above, the
two new methods converges by definition (Yakubu &
Sibanda, 2024).

Akinola et al.,

FJS

solution with those of the methods in this paper to see how
accurate our solutions are; we found out that our methods
performed better than (Henrici, 1962). This is what gave us
the needed motivation to using it in solving the HIRES
Problem. In comparing the results of our methods with those
of Amat et al., (2019) on the HIRES problem, we used the
solution provided by odel5s as the exact solution.

Example 1: Linear Problem
We consider the system [18]
p'(t) = —21p + 19q — 20r
q'(t) =19p — 21q + 20r
r'(t) = 40p — 40q — 407,
on the interval [0, 4] with [p(0), ¢(0), 7(0)]=[1, 0,—1]and exact
solution
p(t)
q(t)
r(t)

0.5[exp(—2t) + exp(—40t)(cos(40t) 4 sin(40t))]
0.5[exp(—2t) —exp(—40t)(cos(40t) + sin(40t))]
exp(—40t)[sin(40t) — cos(40t)].

Result of our computational simulation can be found in Table

3 with different step sizes and Figure 3 with a constant step
1

Numerical Experiments size of h = -—
In this section, we compared the maximum absolute errors of 160
the linear problem in (Henrici, 1962) which has an exact
Table 3: Results of Example 1
Steps h Max Error Max Error Max Error Max Error
Yakubu& Yakubu& First Second
Sibanda (2024) Sibanda (2024) Derivative Derivative
20 1 3.36x 10793 2.64x 10704 2.15% 10792 4.90x 107°°
20
40 1 1.18x 10704 1.80x 107°¢ 2.81x 10793 3.27x 1077
40
80 1 2.42x 107% 1.87x 10708 1.76x 1074 5.07x 10710
80
160 1 4.10x 1078 1.64x 10710 7.83x 1079 5.98x 10713
160
320 1 6.57x 10710 1.34x 10712 2.78% 10797 2.44x 10715
320
2.5e-13 2.5e13
213 2613
E 1.5e13 E 1.5e13
o 41e13 W ie13
5e-14 5e-14
0 0.050.10.150.20.250.30.35 0 0.050.10.150.20.250.30.35
t t
7e-13 7e-13
6e-13 : : 6e-13 =]
o 5e13 o 5e-13 q
S 4e13 5 4e13 —_—
L 3e13 i 3e13
2e13 2e-13
1e-13 1e-13
0 0 - —

0 0.050.10.150.20.250.30.35
t

0 0.050.10.150.20.250.30.35
1

Figure 3: Convergence plot of Example 1 against t using the new second derivative block method

Example 2 Network Problem

Reaction rates are usually called velocities in this parlance.
Let v;, i = 1,2,3,4,5 be the reaction rates in a given network
graph. Suppose reaction rates are given by the following mass
action:

vy =k, v, = ky[P]v;
ks[S].

= k3[P1[Q], vs = ky[R], vs =

Let the concentrations of the corresponding species be
p,q,1,s. Given that the rate constants k; = 3nM/sec, k, =
2nM/sec, k3 = 2.5nM/sec, k, = 3nM/sec, ks = 4nM/sec, the
species concentrations satisfy the following set of differential
equations, expressed in nM/sec

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 83 —97
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d

= (P(®) = 3-25p(®)q(®) - 2p(t)
d
E(q(t)) =2p(t) — 2.5p(t)q(t)
d
E(T(t)) = 2.5p(t)q(t) — 3r(t)

d
E(s(t)) = 2.5p(t)q(t) — 4s(t).

Akinola et al.,

FJS

All species start with initial concentrations of zero at time t =
0. In this example, we used a constant step size h = 0.01.
Computational results are as shown in Figure 4 and Table 4.

Table 4: Results of using both First Derivative and NOSDBHLMM on Example 3 with a Constant Step Size h = 0.01

t y

New First Derivative Computed Concentrations New Second Derivative Computed Concentrations

p(t)
1.0 q(t)
r(t)
s(t)
p(t)
2.0 q(t)
r(t)
s(t)
p(t)
3.0 q(t)
r(t)
s(t)
p(t)
4.0 q(t)
r(t)
s(t)

0.862099414
0.660900099
0.350847134
0.290777135
0.767747763
0.781347539
0.491363558
0.372857774
0.752529641
0.797194540
0.499479528
0.374892820
0.750380222
0.799570984
0.499949401
0.374980699

0.862098107
0.660901374
0.350848147
0.290777870
0.767747605
0.781347684
0.491363593
0.372857775
0.752529621
0.797194561
0.499479529
0.374892820
0.750380219
0.799570987
0.499949401
0.374980699

Figure 4: Concentrations of the species P, Q, R, S for 0 < t < 4 and / = 0.01 using the new derivative method

Concentration (nM)

Concentration (nM)

Example 3: HIRES Problem
This problem was introduced by Schaffer in 1975. It stems

from the

High Irradiance

—— P(1)
—— P(t) ode15s

Time (sec)

—— R(t)
—— R(t) odel5s

Time (sec)

(HIRES) of

photomorphogenesis on the grounds of phytochrome. The
corresponding chemical reaction consists of 8 reactants which
leads to the following system of stiff differential equations.
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Concentration (nM)

Concentration (nM)

—— Qlt)
— Qit) ode15s

Time (sec)

—— Sft)
—— S(t) odel15s

Time (sec)

y,' = —=1.7y, + 0.43y, + 8.32y, + 0.0007
y2' =17y, — 875y,
10.03y; + 0.43y, + 0.035ys
. =832y, +1.71y; — 1.12y,
—1.745y, + 0.43y, + 0.43y,
Ye' = —280y¢yg + 0.69y, + 1.71y; — 0.43y, + 0.69y,

y;' = 280y5ys — 1.81y;
—280y,ys + 1.81y,,
Satisfying the initial conditions y=[1, 0, 0, 0, 0, 0, 0.0057].
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Table 5: Solution of the HIRES Problem at ¢t = 5 and ¢ = 350 Minutes using the New FDBHLMM

y; Amat et al FDBHLMM FDBHLMM FDBHLMM
Solutionatt =5 Solutionatt =5 Solutionatt =5 Solutionatt =5
h=0.1 h=0.01 h =0.001
Vi 0.03209606 0.031957132 0.031957517 0.031957522
Vs 0.00657329 0.006505570 0.006505644 0.006505645
V3 0.00464137 0.004593266 0.004593343 0.004593344
Va 0.09110392 0.089979580 0.089980189 0.089980195
Vs - 0.162306779 0.162321575 0.162321737
Ve - 0.684539117 0.684599106 0.684599764
Vs 0.00572391 0.005646663 0.005646666 0.005646666
Vg 0.00005439 0.000053337 0.000053334 0.000053334
Solution at t = 350 Solution at t = 350
Vs 0.00053631 0.000602815 0.000602855 0.000602856
Ve 0.00115496 0.001416771 0.001416857 0.001416858

Table 6: Solution of the HIRES Problem at t = 5 and £ = 350 Minutes using the Second Derivative Block Hybrid
Method

yi Amat et al NOSDBHLMM NOSDBHLMM

Solutionatt =5 Solutionatt =5 Solutionatt =5
h=0.1 h =0.01

V1 0.03209606 0.031962018 0.031957518

Vs 0.00657329 0.006506512 0.006505644

V3 0.00464137 0.004594251 0.004593343

Va 0.09110392 0.089987280 0.089980189

Vs - 0.162495583 0.162321591

Ve - 0.685304538 0.684599169

V7 0.00572391 0.005646722 0.005646666

Vg 0.00005439 0.000053278 0.000053334
Solution at t = 350 Solution at t = 350

Vs 0.00053631 0.000603326 0.000602855

Ve 0.00115496 0.001417876 0.001416858

Table 6 summarizes the results of the HIRES problem at specific times (5 and 350 minutes), offering a comparative look at
the performance of different numerical methods over time.

Table 7: Absolute error of the HIRES problem at # =5 and ¢ = 350 minutes using the new FDBHLMM

Vi Amat et al (2019) FDBHLMM FDBHLMM FDBHLMM
|Error| atz=>5 |Error| att=>5 |Error| at¢=>5 |Error| atz=>5
h=0.1 h=0.01 h=0.001
yi 1.64 x 107%* 2.54x 1079 2.58 x 107% 2.58 x 10795
y2 7.28 x 107% 5.08x 107% 5.15 x 107 5.16 x 1070
y3 5.21x 1078 3.95 x 107 4.03 x 107% 4.03 x 107%
y4 1.21x 1079 9.05 x 1075 9.11 x 1075 9.12 x107%
ys - 4.87 x107% 3.39 x107% 3.37 x 107%
v6 - 1.52 x 1079 9.29 x 107% 9.22 x 107%
y7 7.73x 107°° 4.04 x 1079 7.04 x 107%° 7.04 x 107%°
y8 1.05x 107% 4.04 x 1079 7.04 x 107%° 7.04 x 107%°
|Error] at £ =350 |Error] at £ =350
ys 6.67x 107% 1.65 x 1077 1.25 x107%7 1.24 x 10797
V6 2.62x 107%* 4.07 x 1077 3.21 x107%7 3.20 x 107%7
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Table 8: Absolute error pf the HIRES problem at t =5 and t = 350 minutes using the second derivative block hybrid

method
Yi Amat et al (2019) NOSDBHLMM NOSDBHLMM
|Error| atz=>5 |Error| atz=>5 |Error| atz=>5
h=0.1 h=0.01
yi 1.64 x 107%* 3.03x 1079 2.58 x 1079
y2 7.28 x 1075 6.02 x 107% 5.15 x 107
y3 5.21x 107% 4.94 x 1079 4.03 x 107%
v4 1.21x 1079 9.82 x107% 9.11 x 107%
ys - 1.40 x 10704 3.39 x 107%
Y6 - 6.13 x 10794 9.28 x 10795
y7 7.73% 10795 6.30 x 1078 7.04 x 107%°
y8 1.05x 107°¢ 6.30 x 1078 7.04 x 107%°
|Error]| at £ =350 |Error] at £ =350
ys 6.67%x 107% 3.46 x 107°7 1.25 x107%7
y6 2.62x 1074 6.98 x 107°7 3.20 x 107°7
! 0.14
0.8 — 0.12 — %0
= —Y (t) odel5s = 0.1 — yz([} odel15s
o 067 o
£ £ 0.08
‘; 0.4 | " 0.06
02 0.04
’ 0.02
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t (min) t (min)
0.02
0.4
__ 00157 .
= = 03
Q [=]
E 0.017 E
s S 02
> — . (f) \ > — Y, (1)
0.005
== yy(t) 0de155s 0.1 = y,(1) 0de155 ~
0 0
0 1 2 3 4 5 0 1 2 3 4 5

t (min)

t (min)

Figure 5: Solution of the HIRES problem at t = 5 min for y;, y2, y3, y4

0.15
3 0.1
E
> 0.05 e 5 (1)
— - (t) ode15s
0 L 1 1 1
0 1 2 3 4 5
t (min)
0.007
0.006
— 0.005
S 0.004
£
= 0.003
> 0.002 — (1)
0.001 Y, (t) 0de155
0
0 1 2 3 4 5

t (min)

Ya (molfl)

0.6
— 0.5
T 0.4
E 0.3
w
0.2 — Ys(l)
0.1 — (1) 0de15s
O 1
0 1 2 3 4 5
t (min)
0.006
()
0.004 — (1) 0de155
0.002
0
-0.002
0 1 2 3 4 5

t (min)

Figure 6: Solution of the HIRES problem at t = 5 min for ys, ys, y7, ys
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Figure 7: Solution of the HIRES problem at t = 350 min for ys, ys

Discussion of Results

In this paper, we presented two block hybrid methods with
non-equidistant grid points. The FDHBLMM is a fifth—order
first derivative block hybrid method with a small region of
absolute stability, while the second method NOSDBHLMM
is of ninth—order with a large region of absolute stability. Both
methods are A(a)-stable, zero-stable, consistent and
convergent. In actual fact, the NOSDBHLMM is an extension
of the FDHBLMM; which gives better approximations to the
exact solution though it involves more function evaluations.
However, the FDHBLMM is faster because it has less
function evaluations per block suffers the ’disadvantage’ of
not being as accurate as the NOSDBHLMM. The better
accuracy of NOSDBHLMM is due to its larger region of
absolute stability as well as smaller error constant than the
FDHBLMM.

Figure 3 shows the convergence plots for Example 3.1 against
time. These plots demonstrate how the numerical solutions
approach the exact solution over time. Besides this, column
six of Table 3 shows that the new NOSDBHLMM had the
smallest maximum absolute error when compared to the two
methods of Yakubu and Sibanda (2024). This confirms the
accuracy of our new method for the solution of first order
linear IVPs. Table 4 and Figure 4 shows the table and figures
after applying the new methods in solving the Network
problem in Example 3.2. The solution of our methods
coincide to a greater extent with those of odel5s.

Figures 5 to 7 present the results of the HIRES problem at
different times (5 minutes and 350 minutes) for different
species with varying step sizes (2 = 0.1, 0.01, 0.001). These
figures are crucial in comparing how different step sizes affect
the numerical solution of the HIRES problem in comparison
to those of Amat et al (2019) and odel5s. Figure 5 shows the
trajectory of the solution of our new NOSDBHLMM when
superimposed with those of odel5s for y1, 2, y3, y4 while
Figure 6 depicts those for y4, y5, y6, y7 at time ¢ = 5 minutes.
Furthermore, we did the same thing at time ¢ = 350 minutes
for 5 and y6 in accordance with Amat et al., (2019), albeit
Amat et al (2019) did not compare their solution with the well
known stift solver odel5s.

In Tables 5 and 6, we present the solution of the HIRES
problem at =5 and ¢ = 350 minutes

Using Amat et al. (2019) variational method, new
FDHBLMM and NOSDBHLMM methods respectively. The
dash in all the tables signifies that the values were not

available in the literature. Table 7 shows a comparison of the
absolute error of the HIRES problem at # =5 and

t = 350 minutes using Amat et al., (2019) and the new
FDBHLMM for 2#=0.1,2=0.01,2=0.001. The table showed
that the new method outperformed those in [16]. Similar
results can be seen in Table 8 for #=0.1 and 2= 0.01. Due to
the computational time involved, for # = 0.001 we could not
compute the solution using the NOSDBHLMM. As stated
earlier, for the purpose of our comparison, we used the
solution provided by odelSs as the exact. The good
performance of our method when compared to the variational
method in Amat et al., (2019) shows that our method is
reliable and can be applied in solving both linear and
nonlinear [VPs.

CONCLUSION

This article successfully developed and analyzed first and
second-order methods for solving the

HIRES problem in photovoltaic cells. By focusing on the
stability and convergence of these methods, it was
demonstrated that the proposed algorithms provide significant
improvements over traditional numerical methods. The first-
order method adapted to fluctuating irradiance levels,
enhancing stability and reducing computational cost. Moreso,
the second-order method improved accuracy and stability that
makes it suitable for long-term simulations. The results
indicate that the new methods are robust and capable of
handling the challenges associated with high irradiance
conditions. The convergence plots and stability analysis
confirm that these methods are reliable for practical
applications. The numerical experiments showed that the
proposed methods outperform existing techniques, providing
more accurate and stable solutions.
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