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Abstract

Diphtheria is a highly contagious bacterial infection that primarily affects the mucous membranes
of the nose, throat, and airways. It is caused by the bacterium Corynebacterium diphtheriae,
which produces a toxin that damages the respiratory system, heart, and nervous system. Despite
the existence of effective vaccines, diphtheria continues to pose a threat to global health. In this
paper, we developed a nonlinear deterministic model which incorporates public awareness and
isolation to describe the dynamics of diphtheria. Analysis of the model reveals that the boundedness
and positivity of solutions have been ascertained, diphtheria free equilibrium is both locally and
globally asymptotically stable whenever the associated control reproduction number Rc < 1 and
unstable when Rc > 1, similarly the endemic equilibrium is globally asymptotically stable when the
control reproduction Rc > 1 and ϕ = τ = δ1 = δ2 = 0. Moreover, the model undergoes backward
bifurcation in which a stable disease-free equilibrium coexists with a stable endemic equilibrium.
The epidemiological implication of backward bifurcation is Rc < 1 is necessary but not sufficient
condition for control of diphtheria even when the classical requirement are satisfied. The most
sensitive parameters for the control of the spread of diphtheria are identified by forward sensitivity
index method and found that contact rate β and progression rate of exposed individuals to infected
compartment are the most sensitive parameters for increasing the transmission. On the contrary,
isolation rate τ and recovery rate of infected individuals γ1 are the most sensitive for reducing the
spread. Furthermore, the numerical simulation performed shows the impact of public awareness and
isolation in controlling the spread of diphtheria. Finally, the result shows public awareness will help
in curtailing the spread of diphtheria infection, and when isolation is applied on infected individuals.
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INTRODUCTION

Diphtheria, an infection of the respiratory tract
caused by Corynebacterium diphtheriae, is a highly
contagious and potentially deadly disease (Johnson et
al., 2024). Diphtheria primarily affects the respiratory
system, but can also affect other parts of the body,
resulting in severe complications and potentially
fatal consequences if left untreated (Egbune et al.,
2024). Diphtheria can spread easily from one

person to another by coughing or sneezing, making
it highly contagious. Some individuals may carry
the bacteria and spread it to others without even
showing symptoms themselves, while others may
develop mild symptoms or, in severe cases, experience
life-threatening complications (WHO 2024). The
symptoms of diphtheria usually develop within 2-5
days after exposure to the bacteria, with initial
symptoms often appearing mild (Egbune et al., 2024).
The symptoms of diphtheria include fever, exhaustion,
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cyanosis, sore throat, trouble swallowing, breathing,
and sometimes paralysis (Musa et al., 2024). In severe
cases of diphtheria, the disease can ravage healthy
respiratory tissue, leading to the formation of a thick,
gray coating known as ”Pseudomembrane” that can
cause significant damage to the heart and kidneys,
potentially resulting in death if left untreated (Musa
et al., 2025).

In the early 20th century, before the advent of the
diphtheria Toxoid vaccine in 1923, diphtheria was a
devastating disease that claimed countless lives, with
children being particularly vulnerable to its lethal
effects (Musa et al., 2025). Despite the existence of
effective vaccines, diphtheria continues to pose a threat
to global health. The DTaP vaccine, which provides
robust protection against diphtheria, pertussis and
tetanus, is a key element in safeguarding public health
against these highly contagious and potentially deadly
diseases (Johnson et al., 2024). While vaccination
efforts in the mid-20th century successfully curbed
the disease, its resurgence in recent years, particularly
in developing nations, can be attributed to declining
vaccination rates and waning immunity among adults,
underscoring the importance of maintaining high
vaccination coverage to protect against this deadly
disease (Sahib et al., 2024).

The World Health Organization (WHO) has
recently reported an alarming increase in diphtheria
cases worldwide, with regions experiencing limited
healthcare infrastructure as the most impacted (Sahib
et al., 2024). The number of reported cases in
2019 (22,986) reached a level not seen since 1996,
highlighting diphtheria as a persistent public health
concern (Pembroke et al., 2023). The African region,
particularly Nigeria, has been the epicenter of the
diphtheria outbreak, with the majority of reported
cases to the WHO originating from this region in 2019
(Traugott et al., 2023). The situation has continued
to worsen in Africa, with a total of 40,929 suspected
cases and 828 deaths recorded in seven countries, with
Nigeria accounting for the highest number of cases and
fatalities (WHO, 2024). Although the WHO European
region considers diphtheria an uncommon occurrence,
cases have been reported in this region between 2012
and 2021, amounting to 452 out of the over 96
000 cases worldwide (WHO, 2023). The Southeast
Asia region, with India, Nepal, and Indonesia being
particularly affected, accounts for 65.3% of the global
diphtheria burden, reporting an average of 8,243 cases
annually to the WHO, demonstrating the prevalence
of this disease in the region (Elsinga et al., 2023).

Many mathematical models have been developed
in studying the dynamics of infectious diseases,
which include diphtheria. Some of these models are
(Andrawus et al., (2025) introduced a deterministic
mathematical model that takes into account the
often-neglected factors of awareness and surveillance

in the transmission dynamics of diphtheria. Both
their theoretical and numerical findings demonstrated
that, with an increase in public awareness and efficient
surveillance systems, diphtheria can be successfully
eradicated within a span of 10 years. (Izzati et
al., (2024) conducted a study that examined the
impact of vaccination completeness on the dynamics
of diphtheria spread, titled ”Dynamical analysis of
a mathematical model on the spread of diphtheria
disease with vaccination completeness factors.” The
results of their study demonstrated that vaccination
completeness plays a significant role in shaping the
population’s response to diphtheria outbreaks as
modeled. These findings highlight the importance
of considering vaccination completeness as a key
factor in strategies to prevent the re-emergence of
diphtheria. (Egbune et al., 2024) conducted a
study titled ”Mathematical Analysis of Spread and
Control of Diphtheria with Emphasis on Diphtheria
Antitoxin Efficiency” to investigate the spread and
control of diphtheria with a particular focus on the
efficacy of Diphtheria Antitoxin. Their findings
showed that Diphtheria Antitoxin efficiency plays
a significant role in reducing the burden of the
disease, preventing severe cases, and limiting the
spread of outbreaks. (Johnson et al., 2024) employed
mathematical modeling techniques to investigated the
spread of diphtheria and the effectiveness of various
control measures. Their findings suggested that the
most effective strategy for reducing the impact of
diphtheria is to increase vaccination rates at birth, as
this leads to a higher number of individuals recovering
from the disease. They also found that quarantine
measures are effective in limiting the spread of
diphtheria, and maternal derived immunity, achieved
through vaccination during pregnancy, holds great
promise in protecting against the disease. (Musa et
al., (2025) conducted a study to examine the dynamics
of the diphtheria epidemic in Nigeria, focusing on
the Kano State outbreak. Their findings indicated
that implementing public awareness campaigns and
isolating infected individuals could significantly reduce
the spread of diphtheria within affected communities.
The results of their study highlighted the importance
of effective communication and containment strategies
in controlling diphtheria outbreaks, particularly in
regions with limited access to healthcare resources.

In light of the aforementioned researchers results,
we developed a mathematical model to assess the
impact of awareness and isolation on diphtheria
dynamics, motivated by the work of (Musa et al.,
2025) by incorporating aware and unaware susceptible
compartments, which is crucial for understanding the
diphtheria dynamics, we also consider awareness as a
rate, not the same as in (Musa et al., 2025).
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MODEL DESCRIPTION

The model is formulated to study the transmission
dynamics of diphtheria infection. The total
population denoted by N(t) is divided into six disjoint
compartments. Susceptible unaware Su(t), susceptible
aware Sa(t), exposed E(t), infected I(t), isolated J(t)
and the removed or recovered compartment R(t). The
recruitment into susceptible class is by birth and
migration at a constant rate π. p is the fraction
of recruited individuals that are aware. Progression
from susceptible unaware into susceptible aware ϕ
compartment is through public awareness. The
susceptible population decrease with the emergence
of the infection at the rate λ. Unaware are more
susceptible to become infected (this is the reason for
adding the parameter θ reducing the rate of infection
in aware). Exposed individuals progress to infected
compartment at rate σ. Infected individuals may
either progress to isolated compartment τ or moved
to recovered compartment γ1. The mortality due
to disease δ1, δ2 only occurs in infected and isolated
compartments, while the natural death occurs in all
the six compartments µ. The total population will
therefore be
N(t) = Su(t) + Sa(t) + E(t) + I(t) + J(t) +R(t).

dSu

dt
= π(1− p)− (λ+ ϕ+ µ)Su,

dSa

dt
= πp+ ϕSu − (θλ+ µ)Sa,

dE

dt
= λ(Su + θSa)− (σ + µ)E,

dI

dt
= σE − (τ + γ1 + µ+ δ1)I,

dJ

dt
= τI − (γ2 + µ+ δ2)J,

dR

dt
= γ1I + γ2J − µR.

(1)

Where

λ =
βI

N

THEORETICAL ANALYSIS OF THE MODEL

Boundedness and Positivity

The solution of the model system (1) is constrained
within a manifold or space Ω, denoted by

Ω = {(Su(t), Sa(t), E(t), I(t),

J(t), R(t)) ϵ R6
+ : N ≤ π

µ
.

(2)

Theorem 1 The region Ω is positively invariant and
an attractor.

Proof 1 Our goal is to demonstrate that R6
+ is

positively invariant, meaning that all solutions to

system (1) that begin within Ω remain within Ω
at all times. Assume that R(0)) > 0 and that
Su(0), Sa(0), E(0), I(0), andJ(0) > 0. If Su(0) and
Sa(0) are not both positive, then Su(t) > 0 and
Sa(t) > 0 for t ∈ [0, t̃) exist at some time t̃ > 0
and Su(t̃) = Sa(t̃) = 0. Using system (1) third, fourth,
and fifth equations, we now get,

dE(t)

dt
≥ −(µ+ σ)E(t) for t ∈ [0, t̃),

dI(t)

dt
≥ −(µ+ δ1 + τ + γ1)I(t) for t ∈ [0, t̃),

dJ(t)

dt
≥ −(µ+ δ2 + γ2)J(t) for t ∈ [0, t̃),

(3)

Thus, E(0) > 0, I(0) > 0 and J(0) > 0 for t ∈ [0, t̃).
As a result, using the system (1) first and second
equations, we’ve obtained

dSu(t)

dt
≥ −(ϕ+ µ+ λ)Su(t) for t ∈ [0, t̃),

dSa(t)

dt
≥ −(µ+ θλ)Sa(t) for t ∈ [0, t̃).

One can see that, Su(0) > 0 and Sa(0) > 0 which
contradict our assumption of Su(t̃) = Sa(t̃) = 0.
Hence Su(t) and Sa(t) are positive. Alternatively, we
can consider a subsystem of (1) excluding the first and
second equations, which can be expressed as a matrix
form, providing a clear demonstration of the positivity
of the remaining state variables in the model.

dX(t)

dt
= MY (t) +B(t), (4)

with

Y (t) =
(
E, I, J, R

)T
,

M =


−k2 m 0 0
σ −k3 0 0
0 τ −k4 0
0 γ1 γ2 −µ

 ,

B(t) =
(
0 0 0 0

)T
,

(5)

where, m = β Su+θSa

N , k2 = µ+σ, k3 = µ+ δ1+ τ +γ1
and k4 = µ+δ2+γ2, The fact that both Su(t) and Sa(t)
are non-negative indicates that M is a Metzler matrix.
indicating that subsystem (4) is a monotone system
(Ibrahim et al., 2025). Therefore, under the flow
of subsystem (4), R4

+ is invariant. R6
+ consequently

becomes positively invariant under the system’s flow
(1).

Diphtheria Free Equilibrium Point

The model system (1) has a diphtheria-free
equilibrium ϵ0 when the community is depleted of
diphtheria. By solving the noninfected classes and
setting the infection classes and the right-hand sides
of equation (1) to zero, one can mathematically
determine this equilibrium.

ϵ0 = (S0
u, S

0
a, E

0, I0, J0, R0) (6)
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Figure 1: Schematic diagram of the model (1). Solid arrows indicate transitions and expressions next to arrows
show the per ca-pita flow rate between compartments.

Table 1: Interpretation of the state variables and parameters used in the model (1).

Variable Description

N Total population
Su Susceptible unaware individuals
Sa Susceptible aware individuals
E Exposed individuals
I Infected individuals
J Isolated individuals
R Recovered individuals

Parameter Description

π Recruitment rate of susceptible individuals
p A proportion of individuals who are aware
ϕ Awareness rate
µ Natural mortality rate
β Effective contact rate
θ Reduction risk of infection
σ progression rate
τ Isolation rate
γ1 Recovery rate of infected individuals
γ2 Recovery rate of isolated individuals

δ1, δ2 Diphtheria induced death rate

S0
u =

(1− p)π

ϕ+ µ
(7)FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 55 - 68 58
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S0
a =

π((1− p)ϕ+ p(ϕ+ µ))

µ(ϕ+ µ)
(8)

(E0, I0, J0, R0) = (0, 0, 0, 0) (9)

Basic Reproduction Number

According to (Abubakar et al.,2025, Andrawus et al.,
2025 and Ibrahim et al., 2025) , the next generation
operator technique was used to find the fundamental
reproduction number, R0 = ρ(F1F−1

2 ). The matrices
F1 present the new infection terms and F2 for the
remaining transition terms are obtained as follows:

F1 =


0

β (S0
u+θ S0

a)
N0 0

0 0 0

0 0 0

 , F2 =


σ + µ 0 0

−σ τ + γ1 + µ+ δ1 0

0 −τ γ2 + µ+ δ2

 (10)

and

F−1
2 =


(σ + µ)

−1
0 0

σ
(σ+µ)(τ+γ1+µ+δ1)

(τ + γ1 + µ+ δ1)
−1

0

σ τ
(σ+µ)(τ+γ1+µ+δ1)(γ2+µ+δ2)

τ
(τ+γ1+µ+δ1)(γ2+µ+δ2)

(γ2 + µ+ δ2)
−1

 (11)

F1F−1
2 =


β (S0

u+θ S0
a)σ

N0(σ+µ)(τ+γ1+µ+δ1)

β (S0
u+θ S0

a)
N0(τ+γ1+µ+δ1)

0

0 0 0

0 0 0

 (12)

The eigenvalues of the matrix F1F−1
2 are found using

the det(F1F−1
2 − MI) = 0 The eigenvalues are

represented by M in this case. (13) computes the
eigenvalues in this way:


0

0

β (S0
u+θ S0

a)σ
N0(σ+µ)(τ+γ1+µ+δ1)

 . (13)

The dominant eigen value from (13) gives the control
reproduction number

Rc =
βσ(S0

u + θS0
a)

N0(σ + µ)(τ + γ1 + µ+ δ1)
(14)

Substituting S0
u, S

0
a and N0 in (14) we have

Rc =
βσ[(1− p)(µ+ θϕ) + θp(ϕ+ µ)]

(σ + µ)(τ + γ1 + µ+ δ1)
(15)

Interpretation of Rc

The control reproduction number Rc is the number
of new infections produced by diphtheria-infected
individuals in a population consisting of susceptible
aware and unaware individuals. In a precise notion,

it is the number produced by an infected individual
in presence of controls in a community.

When there is no awareness and isolation in the society
(i.e ϕ = τ = 0) we obtained the basic reproduction
number as

R0 =
βµσ[(1− p) + θp]

(σ + µ)(γ1 + µ+ δ1)
(16)

Interpretation of R0

The basic reproduction number R0 is the number
of new infections produced by diphtheria-infected
individuals in a fully susceptible population. In a
precise notion, it is the number produced by an
infected individual in the absence of awareness and
isolation in the community.

Local Asymptomatic Stability of Diphtheria
Free Equilibrium

A system is said to be locally asymptotically stable
if it remains stable even after experiencing a small
disturbance. This means that a diphtheria-free
equilibrium that is locally asymptotically stable
represents a situation where a small number of
infections will not lead to a widespread outbreak.
Mathematically, this condition is met if all eigenvalues
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of the linearized system (1) have a negative real part.
Therefore, we have the following theorem:

Theorem 2 The Diphtheria free equilibrium ϵ0 of the
model (1) ϵ0 is lobally-asymptotically stable (GAS) in
Ω if the control reproduction number Rc < 1, and

unstable if Rc > 1.

Proof 2 The linearization of system (1) and
the computation of the Jacobian matrix at the
diphtheria-free equilibrium can be done by performing
the following steps:

J(ϵ0) =



−µ− ϕ 0 0 −βM 0 0

ϕ −µ 0 −β N 0 0

0 0 −µ− σ β (M +N) 0 0

0 0 σ −τ − γ1 − µ− δ1 0 0

0 0 0 τ −γ2 − µ− δ2 0

0 0 0 γ1 γ2 −µ


, (17)

where

M =
µ(1− p)

ϕ+ µ
,N =

µ((1− p)ϕ+ p(ϕ+ µ))

µ(ϕ+ µ)

reducing equation (17) into row echelon yield

J(ϵ0) =



−µ− ϕ 0 0 −βM 0 0

0 −µ 0 (−β N−βM)ϕ−β Nµ
µ+ϕ 0 0

0 0 −µ− σ β (M +N) 0 0

0 0 0 σ β(M+N)−(µ+σ)(µ+τ+δ1+γ1)
µ+σ 0 0

0 0 0 0 −γ2 − µ− δ2 0

0 0 0 0 0 −µ


(18)

Using the Maple software, the eigenvalues are
determined as follows:



−γ2 − µ− δ2

−µ− σ

σ β(M+N)−(µ+σ)(µ+τ+δ1+γ1)
µ+σ

−µ− ϕ

−µ

−µ


(19)

Clearly, λ1, λ2, λ4, λ5 and λ6 are all negatives from
(19).
Then λ3 is also negative

⇐⇒ σ β (M +N)− (µ+ σ) (µ+ τ + δ1 + γ1)

µ+ σ
< 0,

(20)

⇐⇒ σ β (M +N)− (µ+ σ) (µ+ τ + δ1 + γ1) < 0,

(21)

⇐⇒ βσ(M +N) < (µ+ σ)(µ+ δ1 + τ + γ1), (22)

⇐⇒ βσ(M +N)

(µ+ σ)(µ+ δ1 + τ + γ1)
< 1, (23)

substituting M and N in 23 λ3 is also negative

⇐⇒ βσ[(1− p)(µ+ θϕ) + θp(ϕ+ µ)]

(σ + µ)(µ+ δ1 + τ + γ1)
= Rc < 1.

(24)

The analysis shows that if Rc < 1, then all eigenvalues
are negative, ensuring the stability of the disease-free
equilibrium point. Conversely, if Rc > 1, the
eigenvalues are unstable, indicating that the disease
will continue to spread in the population. This
completes the proof of Theorem (2)..
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Interpretation of theorem (2)
Theorem (2) epidemiologically demonstrates that a
community will remain free of endemic diphtheria
despite a small number of infected individuals if the
control reproduction number Rc is less than 1. This
implies that if the number of diphtheria cases is low
and Rc is kept below 1, the disease can be effectively
controlled and prevented from becoming endemic.

Global Asymptomatic Stability of Diphtheria
Free Equilibrium

Theorem 3 The Diphtheria free equilibrium ϵ0 of the
model (1) ϵ0 is globally-asymptotically stable (GAS)
in Ω if the control reproduction number Rc < 1, and
unstable if Rc > 1.

Proof 3 The proof of the theorem hinges on ensuring
that conditions (P1) and (P2) as in (Castillo-Charez
and Son, 2004) hold true when Rc < 1. The model
(1) can be written in the following form:

dP1

dt
= F (P1, P2), (25)

dP2

dt
= G(P1, P2);G(P1, 0) = 0, (26)

where P1 = (S0
u, S

0
a, R

0) and P2 = (E0, I0, J0), where
P1 ∈ R3

+ is denoting the uninfected population and
P2 ∈ R3

+ denoting the infected population. The
diphtheria free equilibrium is now denoted as, M0 =
(P ∗

1 , 0)
where,
P ∗
1 = (N0, 0) Now for the first condition, globally

asymptotic stability of P ∗
1 , gives

dP1

dt
= F (P1, 0) =

 π(1− p)− (ϕ+ µ)S0
u

πp+ ϕSu − µS0
a

0

 . (27)

A linear ODE solving gives,

S0
u(t) =

π(1− p)

(ϕ+ µ)
− π(1− p)

(ϕ+ µ)
e−(ϕ+µ)t + S0

u(0)e
−(ϕ+µ)t,

(28)

S0
a(t) =

πp+ ϕS0
u

µ
− πp+ ϕS0

u

µ
e−µt + S0

a(0)e
−µt.

(29)

Now, clearly from system (1) we have, S0
u(t)+S0

a(t)+
R0(t) → N0(t) as t → ∞ regardless of the value of
S0
u(t), S

0
a(t) and R0(t). Thus , P ∗

1 = (N0, 0) is globally
asymptotically stable.

Next, for the second condition, that is G̃(P1, P2) =
AP2 −G(P1, P2) ≥ 0

A =

 −(µ+ σ) β(Su+θSa)
N 0

σ −(µ+ δ1 + τ + γ1) 0
0 τ −(γ2 + µ+ δ2)

 .

(30)

The matrix A is a Metziller matrix (the off-diagonal
elements of are non negative).

G(P1, P2) =


βI0

N0 S
0
u + θβI0

N0 S0
a − (σ + µ)E0

σE0 − (µ+ δ1 + τ + γ1)I
0

τI − (µ+ δ2 + γ2)J
0

 (31)

Then,

G̃(P1, P2) = AP2 −G(P1, P2) =

 0
0
0

 . (32)

That is

G̃(P1, P2) =
[
0 0 0

]T
. (33)

It is obvious that G̃(P1, P2) = 0.

Diphtheria Endemic Equilibrium Point

A diphtheria reaches endemic equilibrium when it has
spread and remained in a community for an extended
period of time. We may show that the equilibrium
state exists by figuring out the implicit solutions of
the model (1) state variables in terms of λ, even
though they are hard to solve explicitly. Given that
the variables in the condition of endemic equilibrium
are S∗∗

u , S∗∗
a , E∗∗, I∗∗, J∗∗, R∗∗ and that the force of

infection is λ∗∗, the solutions of the state variables
are as follows:

S∗∗
u =

(1− p)π

λ+ k1
,

S∗∗
a =

π((1− p)ϕ+ p(λ+ k1)

(θλ+ µ)(λ+ k1)
,

E∗∗ =
λπ((1− p)(θλ+ µ+ θϕ) + θp(λ+ k1))

k2(λ+ k1)(θλ+ µ)
,

I∗∗ =
λπσ((1− p)(θλ+ µ+ θϕ) + θp(λ+ k1))

k2k3(λ+ k1)(θλ+ µ)
,

J∗∗ =
λπτσ((1− p)(θλ+ µ+ θϕ) + θp(λ+ k1))

k2k3k4(λ+ k1)(θλ+ µ)
,

R∗∗ =
λπσγ1((1− p)(θλ+ µ+ θϕ) + θp(λ+ k1))

µk2k3(λ+ k1)(θλ+ µ)

+
λπτσγ2((1− p)(θλ+ µ+ θϕ) + θp(λ+ k1))

µk2k3k4(λ+ k1)(θλ+ µ)
.

(34)

Where
k1 = ϕ + µ, k2 = σ + µ, k3 = τ + γ1 + µ + δ1 and
k4 = γ2 + µ+ δ2
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Existence of Diphtheria Endemic Equilibrium
Point

To verify the existence of the endemic equilibrium
point of the proposed model (1), the Descartes rule of
sign was applied. This rule states that in a polynomial
equation with real coefficients and degree n ≥ 2, the
number of positive roots is equal to the number of
changes in the sign of the terms in the equation, or
less than this by an even number. In this case, the
force of infection at the endemic state was represented
by:

λ∗∗ =
βI∗∗

N∗∗
(35)

where

N∗∗ = S∗∗
u + S∗∗

a + E∗∗ + I∗∗ + J∗∗ +R∗∗ (36)

When (34) is substituted into (35), the following
quadratic equation in terms of λ∗ is obtained: When
Rc < 1, the disease-free equilibrium of equation (6) is
equivalent to λ∗∗ = 0

λ∗∗2Q1 + λ∗∗Q2 +Q3 = 0, (37)

where

Q1 = (1− p)(k4 + τ)µθσ + (1− p)(γ1k4 + τγ2) + (1− p)µk3k4

+(k4 + τ)µθσp+ (γ1k4 + τγ2)θσp+ µσk3k4,

Q2 = (1− p)µθk2k3k4 + (1− p)µθϕk3k4 + (1− p)µθϕσk4 + (1− p)µθσϕτ

+(1− p)µσγ1k4 + (1− p)θϕσγ1 + (1− p)µστγ2 + (1− p)θϕσγ2τ + (k2 + θ)µk3k4

+(k4 + τ)µσθpk1 + (γ1k4 + τγ2)θσpk1 + (1− p)(k4 + τ)µ− βµθσ(1 + p),

Q3 = (ϕ+ µ)(σ + µ)(τ + γ1 + µ+ δ1)[1−Rc].

(38)

The number of endemic equilibrium points in the
system is equivalent to the number of positive roots of
equation (37). It is important to note that the number
of roots of equation (37) is equal to the number of
changes in sign of the constants Q1, Q2, and Q3, as
discussed in (Andrawus et al 2024). It is evident that
Q1 is positive since all the parameters are positive
and 0 < p < 1, which implies from equations (37) and
(38) the following theorem:

Theorem 4 The model system (1) has positive
endemic equilibrium:

i. If Q2 > 0 and Q3 > 0 ⇐⇒ Rc < 1, implies that the
system has no positive equilibrium.
ii. If Q2 < 0 and Q3 < 0 ⇐⇒ Rc > 1, implies that
the system has unique positive equilibrium.
iii. If Q2 > 0 and Q3 < 0 ⇐⇒ Rc > 1, implies that
the system has unique positive equilibrium.
iv. If Q2 < 0 and Q3 > 0 ⇐⇒ Rc < 1 and
Q2

2 − 4Q1Q3 > 0, implies that the system has two
positive equilibria.

Case (ii) and (iii) of theorem (4) were used as a basis
for the following theorem.

Theorem 5 A unique positive endemic equilibrium
exists in the system (1) if Rc > 1.

Note: case (iv) shows the possibility of the occurrence
of subcritical or backward bifurcation. By backward
bifurcation we mean the coexistence of a stable disease

free equilibrium with a stable endemic equilibrium
when Rc. When bifurcation occurs, Rc < 1 is only
necessary but not sufficient condition for the control of
diphtheria. So we need to show that Rc is a sufficient
and necessary condition for the control of diphtheria
under consideration.

Bifurcation Analysis

The diphtheria dynamics model (1) exhibit backward
(Subcritical) bifurcation near Rc = 1, that is
coexistence of disease-free equilibrium and endemic
equilibrium when Rc < 1. The epidemiological
consequences of backward bifurcation is that, Rc < 1
will not guaranty the condition for the disease control.
Centre manifold theorem stated by (Castillo-Charez
and Son, 2002) is applied in the model (1) for
bifurcation analysis, to analyse the stability near
disease-free equilibrium at Rc = 1.
let β = β∗∗ be the bifurcation parameter and Rc = 1
Implies;

β∗∗ =
(ϕ+ µ)(τ + γ1 + µ+ δ1)

σ[(1− p)(µ+ θϕ) + θp(ϕ+ µ)]
. (39)

The Theorem is applied by making the change of
variables,
let,
Su = x1, Sa = x2, E = x3, I = x4, J = x5 and
R = x6 such that, N = x1 + x2 + x3 + x4 + x5 + x6.
Therefore; the equation of the model (1) can be written
in the form:

dX

dt
= (f1, f2, f3, f4, f5, f6)

T , (40)
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such that

dX1

dt
= f1 = (1− p)π − (ϕ+ µ)x1 −

β∗∗x1x4

N
,

dX2

dt
= f2 = πp+ ϕx1 − µx2 −

αβ∗∗x2θx4

N
,

dX3

dt
= f3 =

β∗∗x1x4

N
+

αβ∗∗x2θx4

N
− (σ + µ)x3,

dX4

dt
= f4 = σx3 − (γ1 + τ + µ+ δ1)x4,

dX5

dt
= f5 = τx4 − (γ2 + µ+ δ2)x5,

dX6

dt
= f6 = γ2x4 + γ2x5 − µx6

(41)

Now, the Jacobian matrix of the system 41 at disease free equilibrium ϵ0 is given by,

J(ϵ0) =



−µ− ϕ 0 0 −βM 0 0

ϕ −µ 0 −β N 0 0

0 0 −µ− σ β (M +N) 0 0

0 0 σ −τ − γ1 − µ− δ1 0 0

0 0 0 τ −γ2 − µ− δ2 0

0 0 0 γ1 γ2 −µ


(42)

where,

M =
µ((1− p)

ϕ+ µ
,N =

µ((1− p)ϕ+ p(ϕ+ µ))

µ(ϕ+ µ)
.

The linearized system (42) with β = β∗∗ has a zero eigenvalues.Now, let V = [v1, v2, v3, v4, v5, v6] and W =
[w1, w2, w3, w4, w5, w6]

T be the appropriate left and right eigenvectors linked to the system’s Jacobian matrix’s
simple zero eigenvalues, respectively (42).
Solving for the right eigenvectors W we have,

J(ϵ0).W =



−µ− ϕ 0 0 −βM 0 0

ϕ −µ 0 −β N 0 0

0 0 −µ− σ β (M +N) 0 0

0 0 σ −τ − γ1 − µ− δ1 0 0

0 0 0 τ −γ2 − µ− δ2 0

0 0 0 γ1 γ2 −µ




w1

w2

w3

w4

w5

w6

 = 0, (43)

we have,

w1 =
−β∗∗Mw4

ϕ+ µ
< 0, w2 =

ϕw1 − β∗∗Mw4

µ
< 0,

w3 = w3 > 0, w4 = w4 > 0,

w5 =
τw4

γ2 + µ+ δ1
> 0, w6 =

w4(γ1 + γ2)

µ
> 0,
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Similarly, solving for the left eigenvectors V

V T .J(ϵ0) =



v1

v2

v3

v4

v5

v6



T



−µ− ϕ 0 0 −βM 0 0

ϕ −µ 0 −β N 0 0

0 0 −µ− σ β (M +N) 0 0

0 0 σ −τ − γ1 − µ− δ1 0 0

0 0 0 τ −γ2 − µ− δ2 0

0 0 0 γ1 γ2 −µ


= 0, (44)

we have,

v1 = v2 = v5 = v6 = 0, v3 =
σv4
µ+ σ

> 0, v4 = v4 > 0.

Now, computing the partial derivatives of the system
(41) which are non-zero. Since v1 = v2 = 0, and the
second partial derivative of f4, f5 and f6 are zeros, we
only consider for k = 3 that is,

dX3

dt
= f3 =

β∗∗x1x4

N
+

θβ∗∗x2θx4

N
− (σ + µ)x3.

(45)

We get

∂2f3
∂x1∂x4

=
β∗∗

N
,

∂2f3
∂x2∂x4

=
θβ∗∗

N
, (46)

∂2f3
∂x4∂β

=
x1

N
,
∂2f3
∂x∂β

=
θx2

N
, (47)

Therefore,

a = v3

6∑
i,j=3

wiwj
∂2f3

∂xi∂xj
(0, 0), (48)

a =
v3w4β

N
(w1 + θw2) < 0. (49)

Similarly

b = v3

6∑
i=3

wi
∂2f3

∂xi∂β∗∗ (0, 0), (50)

b = v3w4(
S0
u

N0
+

θS0
a

N0
) > 0 (51)

As a result, b > 0 and a < 0.The following theorem is
true:

Theorem 6 The diphtheria model has a backward
bifurcation at Rc = 1. The equilibrium becomes
unstable when β∗∗ > 0 shifts from β∗∗ < 0. A negative
unstable equilibrium asymptotically transforms into a
positive one. Since the bifurcation that occurred is
stable, Rc < 1 is a necessary and sufficient condition
for the control of diphtheria.

Global Asymptomatic Stability of Diphtheria
Endemic Equilibrium

Theorem 7 The diphtheria endemic equilibrium
is globally asymptotically stable if the control
reproduction number Rc > 1 and unstable if Rc < 1.

Proof 4 Let F be Goh-Volterra type of Lyapunov function as given below.

F =

(
Su − S∗∗

u − S∗∗
u ln

Su

S

∗∗

u

)
+

(
Sa − S∗∗

a − S∗∗
a ln

Sa

S

∗∗

a

)
+

(
E − E∗∗ − E∗∗ln

E

E

∗∗)
+
(σ + µ)

σ

(
I − I∗∗ − I∗∗ln

I

I
∗∗
)
+

(σ + µ)(τ + µ)

τσ

(
J − J∗∗ − J∗∗ln

J

J

∗∗)
+
(σ + µ)(τ + µ)(γ2 + µ)

τγ2σ

(
R−R∗∗ −R∗∗ln

R

R∗∗

)
.

(52)

Differentiating (52) with respect to time yields

Ḟ =

(
1− S∗∗

u

Su

)
Ṡu +

(
1− S∗∗

a

Sa

)
Ṡa +

(
1− E∗∗

E

)
Ė +

(σ + µ)

σ

(
1− I∗∗

I

)
İ

(σ + µ)(τ + µ)

τσ

(
1− J∗∗

J

)
J̇ +

(σ + µ)(τ + µ)(γ2 + µ)

τγ2σ

(
1− R∗∗

R

)
Ṙ

(53)
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with

N =
π

µ
(54)

As the infection’s force is altered, we have

λ̄ = β̄I (55)

where

β̄ = β
π

µ
(56)

When (1) is substituted with (53), we obtain

Ḟ =

(
1− S∗∗

u

Su

)
((1− p)π − λSu − µSu) +

(
1− S∗∗

a

Sa

)
(pπ − αλSa − µSa)

+

(
1− E∗∗

E

)
(λSu + αλSa − (σ + µ)E) +

(σ + µ)

σ

(
1− I∗∗

I

)
(σE − (τ + µ)I)

+
(σ + µ)(τ + µ)

στ

(
1− J∗∗

J

)
(τI − (γ2 + µ)J)

+
(σ + µ)(τ + µ)(γ2 + µ)

σγ2τ

(
1− R∗∗

R

)
(γ2J − µR)

(57)

With relationships

(1− p)π = λ∗∗S∗∗
u + µS∗∗

u , pπ = θλ∗∗S∗∗
a + µS∗∗

a , (σ + µ)E∗∗ = λ∗∗S∗∗
u + θλ∗∗S∗∗

a ,

(τ + µ)I∗∗ = σE∗∗, (γ2 + µ)J∗∗ = τI∗∗, µR∗∗ = γ2J
∗∗.

(58)

The relations in (58) can be changed to (57).

Ḟ ≤ µS∗∗
u

(
2− Su

S∗∗
u

− S∗∗
u

Su

)
+ µS∗∗

a

(
2− Sa

S∗∗
a

− S∗∗
a

Sa

)
+λS∗∗

u

(
6− S∗∗

u

Su
− SuE

∗∗

S∗∗
u E

− EI∗∗

E∗∗I
− IJ∗∗

I∗∗J
− JR∗∗

J∗∗R
− R

R∗∗

)
+ θλS∗∗

a

(
6− S∗∗

a

Sa
− SaE

∗∗

S∗∗
a E

− EI∗∗

E∗∗I
− IJ∗∗

I∗∗J
− JR∗∗

J∗∗R
− R

R∗∗

) (59)

Furthermore, we utilize the relationship between the geometric and arithmetic means to derive(
2− Su

S∗∗
u

− S∗∗
u

Su

)
≤ 0,

(
2− Sa

S∗∗
a

− S∗∗
a

Sa

)
≤ 0,(

6− S∗∗
u

Su
− SuE

∗∗

S∗∗
u E

− EI∗∗

E∗∗I
− IJ∗∗

I∗∗J
− JR∗∗

J∗∗R
− R

R∗∗

)
≤ 0,(

6− S∗∗
a

Sa
− SaE

∗∗

S∗∗
a E

− EI∗∗

E∗∗I
− IJ∗∗

I∗∗J
− JR∗∗

J∗∗R
− R

R∗∗

)
≤ 0.

(60)

Hence, we have Ḟ ≤ 0 with conditions that ϕ = τ =
δ1 = δ2 = 0 and Rc > 1, since all the concerned
variable in the model such as Su, Sa, E, I, J and R
are at steady state (Diphtheria endemic steady state),
this can be used in place of the relevant variable of
(1) to give

lim
t→∞

(Su(t), Sa(t), E(t), I(t), J(t), R(t)) →

(Su, Sa, E, I, J,R
(61)

Therefore, the result follows by applying Lasalle
invariance principle (Lasalle, 1976)

Sensitivity analysis

In this section, we utilized the forward sensitivity
index method to analyze the proposed diphtheria
model in relation to the reproduction number Rc

with respect to the biological parameters used in the

model. The sign of each parameter was determined
using this method, with negative values indicating
that the parameter is most sensitive for decreasing
Rc, while positive values indicate that the parameter
is most sensitive for increasing Rc (Andrawus et al.,
2024).

The normalized local sensitivity index of the Rc with
respect to the parameters is given by,

αRc

ξ =
ξ

Rc
× ∂Rc

∂ξ
(62)

NUMERICAL SIMULATIONS

The numerical simulation of the model’s state variables
using the parameter values listed in Table 3 is shown in
this section. The transmission dynamics of the model
(1) are thoroughly understood through a numerical

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 55 - 68 65



MODELING THE DYNAMICS OF ... Ahmad et al. FJS

Table 2: Forward Normalized Sensitivity Indices

Parameter Elasticity Indices Values of the Elasticity index

θ αRc

θ 0.0052

ϕ αRc

ϕ -0.04018

σ αRc
σ 0.3112

β αRc

β 1.0000

τ αRc
τ -0.6125

γ1 αRc
γ1

-0.5200
γ2 αRc

γ -0.2652

δ1 αRc

δ1
0.060

δ2 αRc

δ2
0.0753

Figure 2: Bar chart graph showing the elasticity indices versus parameters

Table 3: Ranges and baseline values of parameters of model (1).

Parameter Ranges (Baseline) Unit Reference
λ 0.0006 per year Fitted
π 0.01865 per year (Andrawus et al,. 2025)
p 0.06 per year Fitted
ϕ 0.1007 per year Fitted
µ 0.01865 per year (Andrawus et al,. 2025)
δ1 0.0713 per year Fitted
δ2 0.0653 per year (Andrawus et al,. 2025)
β 0.221 per year (Andrawus et al,. 2025)
θ 0.76521 per year Fitted

γ1 0.032676 per year Fitted
γ2 0.0746 per year Fitted
τ 0.2 per year Fitted
σ 0.5 per year Fitted

simulation. Time-series diagrams are used to show
how the compartments behave and how important
variables affect the state variables.

DISCUSSION

The transmission dynamics of the model was simulated
using state variables and the parameters in table

??. The behaviour of the state variables and pattern
of movement from one compartment to another are
examined. Figure 3 shows the pattern of unaware
and aware susceptible individuals with different level
of awareness campaign. The plots clearly shows the
impact of awareness parameter ϕ. As ϕ increases,
number of unaware individuals decreases while aware
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Figure 3: Pattern of Susceptible aware and unaware individuals with different values of ϕ

Figure 4: Pattern of infected and isolated individuals with different values of τ

individuals increases. This pattern highlights the
impact of awareness campaigns on the spread of
diphtheria. Figure 4 illustrates the impact of isolation
parameter τ on the trends of infected and isolated
individuals in the population. The plots demonstrate
that as τ increases, the number of infected individuals
decreases, while the number of isolated individuals
increases. This trend highlights the effectiveness of
isolation strategies in reducing the number of infected
individuals and increasing the number of isolated
individuals, which can potentially slow down the
spread of diphtheria in the population.

CONCLUSION

In this paper, we developed a nonlinear deterministic
model which incorporates public awareness and
isolation for the transmission dynamics of diphtheria.
The analysis of the model reveals that the

diphtheria free equilibrium is both locally and
globally asymptotically stable whenever the associated
reproduction number Rc < 1 and unstable when
Rc > 1. Contrarily, the endemic equilibrium is
globally asymptotically stable when the associated
reproduction number is Rc > 1 and unstable when
Rc < 1. Furthermore, the model undergoes the
phenomenon of backward bifurcation in which a
stable disease-free equilibrium coexists with a stable
endemic equilibrium. The epidemiological implication
of backward bifurcation is Rc < 1 is necessary but
not sufficient condition for diphtheria control even
when the classical requirement are satisfied, however
the backward bifurcation analysis shows that when
the bifurcation parameter β∗∗ < 0 the system is
locally asymptotically stable and there exist a positive
unstable equilibrium, while If β∗∗ > 0 is unstable
and there exist a negative and locally asymptotically
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stable equilibrium. Hence the requirement of having
Rc < 1 will not suffices the condition for the control
of diphtheria. The most sensitive parameters for the
control of the spread of diphtheria are identified using
the forward sensitivity index method as shown in
Figure 2, the most sensitive parameters that increasing
the transmission are β and σ, while the parameters

for decreasing are τ and γ1 respectively. In addition,
the numerical simulations carried out in figure 3 show
the impact of public awareness. Similarly, figure 4
show the impact of isolation. Finally, the result shows
public awareness will help in curtailing the spread of
diphtheria infection, and when isolation is applied to
infected individuals.
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