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ABSTRACT

Despite the effectiveness of the vaccine, measles is still a major worldwide health concern. Human behavior,
including vaccine reluctance and reactions to health initiatives, is examined in this study. This study uses a
thorough SEITRV (Susceptible-Exposed-Infectious—Treated—Recovered—Vaccinated) model to examine how
different vaccination campaigns impact measles transmission via the lens of human behavior. Using both
epidemiological and behavioral characteristics, an SEITRV model was created to mimic the spread of measles.
We modeled treatments including treatment availability, education campaigns, and mass and targeted
immunization. Simulations assessed how public behavior affects the spread of disease using data from previous
outbreaks. According to simulation studies, vaccination intervention has a major impact on how measles
outbreaks develop. Models that took vaccination awareness into account. Strategies that combined strong public
education with high vaccination rates, in particular, showed the biggest drops in disease prevalence. These
results highlight how ineffective vaccination coverage is on its own in controlling disease This study
emphasizes that mass vaccination for controlling measles and behavioral variables like vaccination reluctance
and public response to health campaigns must also be addressed by public health methods. The efficacy of
disease control initiatives is increased when medical interventions are combined with focused initiatives to
change public perceptions and behavior. Therefore, effective measles containment and eventual eradication
require a dual focus on clinical and behavioral interventions.

Keywords: Measles, Vaccine, SEITRV model, Vaccination, Educational programme, Eradication

INTRODUCTION

The fast-spreading Morbillivirus is what causes measles and
this disease is well known for causing serious health
problems. Generally, running a fever, getting a rash, red eyes
or cough appear about 8§—12 days following contact. Since
recent outbreaks happened in areas where the vaccine is less
common, it is clear we must learn more about Disease A and
see how spreading awareness affects its spread. Since the
disease spreads very fast, several strategies are necessary to
ensure it is completely wiped out (WHO, 2025; Yunus&
Olayiwola, 2025; Adewole (2022); Kumar et al., 2022; Peter
et al., 2024). Epidemiologic tools with real information are
practical for studying how measles spreads, but carefully
looking at people’s actions explains how epidemics,
population size and control strategies fit together. Control
strategies can make it clearer how disease spreads and is
controlled in a population by lowering the disease burden
while staying within resource constraints and being aware of
the main characteristics of the epidemiological models
(Wireko et al., 2024; Phillipp 2020; Adewale et al., 2014).
Many studies have shown that mathematical models are very
helpful in explaining and managing the spread of infectious
diseases (Kolawole, 2024; Kolawole & Olayiwola, 2016;
Kolawole et al., 2022a; Kolawole et al., 2022b; Olayiwola et
al., 2025). They create order in understanding transmission,
project different results using different examples and show the
impact of different strategies. By changing epidemiological
data into measurable factors such models assist in deciding
effective public health policies and applicable actions
(Vynnycky et al., 2018; Oh et al., 2022; Suwoyo et al., 2023;
Kolawole et al., 2023; Yunus & Olayiwola, 2025). As a result
of these insights, response and readiness are improved and
limited resources are better distributed to benefit most people.
Vaccination plays a key role in preventing different types of

infectious diseases from spreading. To be -effective,
vaccination programs depend on reaching and serving
individuals equally and they must have high population
coverage (Kolawole, 2025; Yunus & Olayiwola, 2025a;
Yunus & Olayiwola, 2025b; Yunus & Olayiwola, 2024;
Olayiwola et al., 2023; Plans-Rubio, 2020). Mathematical
studies have shown that using vaccines can bring about a drop
in the spread of diseases, fewer cases of sickness and a
possible end to diseases such as measles. They also underline
the fact that both public participation and a well-run process
matter and that public health depends on a balance between
medical factors and the parts of life that affect health.
Examining how vaccination supports disease control and
elimination stresses immunization’s major role in building the
overall health of people everywhere. These epidemics are
frequently caused by issues including vaccine hesitancy,
unequal vaccination coverage, and vaccine administration
delays. It is crucial to comprehend how human behavior
shapes vaccine dynamics in order to eradicate measles. An
innovative ~ SEITRV  (Susceptible-Exposed—Infectious—
Treated—Recovered—Vaccinated) epidemic model that
integrates behavioral responses into measles transmission and
control is presented in this work. This paradigm incorporates
several vaccination techniques, such as reactive campaigns
and routine immunization, treatment-seeking behavior, and
public awareness, which is not the case with traditional
models. The model mimics the ways in which these complex
actions interact with community behavior to affect how
measles epidemics develop. The novelty of this research lies
in its comprehensive behavioral integration within a
compartmental epidemic model and its ability to assess the
effectiveness of combined interventions. This approach
provides deeper insights into the design of more adaptive and
targeted vaccination policies, helping public health authorities
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maximize the impact of immunizations programme and move
closer to global measles eradication.

MATERIALS AND METHODS

Model Formulation

Based on the Adewole (2022), this paper then develops a
compartmental mathematical model to explain the dynamics
of transmission of measles in a population. It includes
effectively the major disease phases and primary public health
measures, including treatment and vaccination, by
subdividing the population into six compartments,
Susceptible (S), Exposed (E), Infectious (I), Treated (T),
Recovered (R), and Vaccinated (V). It describes infection by
contact, the process of exposure to infectiousness, treatment,
recovery, vaccination and loss of immunity. The important
control measures, which include vaccination, treatment, and
creation of awareness among the population, are clearly
included. Another assumption that the model takes into
account is relapse because of immunity diminution and
natural death. Its dynamics are biologically realistic as well as

Table 1: Description of Variables
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mathematical consistent, well-posed both analytically and
numerically, and offer a solid mathematical platform to
comprehend the dynamics of measles and test interventional
strategies. The system of equations is thus depicted in (1)
below with model description below in table 1 which give
description of parameters, values, and references

B N-pLls S
G MN-ByS—(atp+te)
aE_gls + @)E
gt_ﬁN (0 +9)
S=0E—(y1+6+0q) (1)
dT

qr = PSHol =2+ )T

dR

2c = @+ yDl+y.T - (¢ + )R
W _ as +n)V

- (e+m

asS(t) 2 0,E(t) =0,I1(t) =0,T(t) =0,R(t) =0,V(t) =
0 and is subjected to an initial condition 0 < T <1

Variable Description

S(t) Susceptible class

E(t) Exposed class

I(t) Infected class

T(t) Treated class

R(t) Recovered class

V() Vaccinated class

Table 2: Description of Parameters and Values

Parameter Description Values

N Total population 0.1625

B Rate of transmission from infected individuals to susceptible individuals 0.001

g Rate at which exposed individuals become infectious 0.5

Y1, V2 Recovery rate of infectious individuals 0.2

17 Natural mortality rate 0.03

) Rate of treatment effectiveness i.e. treatment reduces transmissibility or severity 1.0

a Rate of vaccination 0.0016

p Awareness and enlightenment rate i.e. influences the probability of vaccination and decreases 0.113
the susceptible population by encouraging self-protection or behavior changes)

0 Academic program intervention which promotes better health-seeking behaviour and treatment  1.0126
compliance

n Vaccine waning rate 0.3

w Loss of immunity rate 0.5

Existence and Uniqueness of the Model Solution

The model in equation (1), which represents the spread of an
epidemic disease within a human population, requires that its
parameters be nonnegative for its existence and uniqueness of
the model solution. To ensure that the system of differential
equations in equation (1) is both mathematically valid and
epidemiologically sound, it is important to establish that the
model’s state variables remain nonnegative. Equation (1) is
considered well-defined at the initial point if the initial
conditions are nonnegative.S(0) = sy, E(0) = ey, [(0) =
i, T(0) =ty, R(0) =15, V(0) =vy; In that case, the
solutions of system (1) will persist in being nonnegative
throughout their evolution, t > Oand that these positive
solutions are bounded. We thus apply the following theorems.
Theorem 1

Let (x,y)be distinct points of normed linear space (X, ||
-|DoverR. Then the map of p:[0,1] € R - (X, ||--+]]) such
that p(1) = Ax + (1 — A)yis continuous on [0, 1].

Proof:
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Let Ay € [0,1]then p(Ay) = Agx + (1 — Ag)yfor anyi, €

[0,1], lp(D) — p(Ao)ll = 1A — 20)x + (A — 2Vl

< 14 = 2ol (llxIl + llylD 2

If £>0is given, let § = ————1IflA— 2, <&, then
I+l

thellp(2) — p(Ap)Il < €. Therefore, p is continuous atl.
Since Aq is an arbitrary point in [0, 1]. Then p is continuous
on [0, 1]. Let X be a linear space overR. If (x, y) are distinct
points of X, the set Ax + (1 — A)yliesin0 <A1 <1
Hence, the solutions of system (1) are bounded if we consider
the total population. The variation in the total population
concerning time is given by:
N =S +E®)+I)+T@) +R@®) +V(t)

3)
The variation in the total population concerning time is given
by:
dn(t) _
Tar

S (S(®) + E(6) +1(t) + T(£) + R() + V(1)

4)
Such that
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LO = =S +E+I+T+R+V) >N () <pu—oN

(%)
Hence, it is obtained that
N™(t) + N < p, using the integrating factor concept on the
total population N(t) and this leads to
Firstly,
N(0) = % + Ke™#0) K = N(0) — g resulting to

Thus, substituting (6) into (5) as time progressively increases
yields:

i <lim|* Y e ey
N < fim [+ (N©) = e =
ThenN(0) < %’ thenN (t) < 5.

set under the flow described by (6) so that no solution path
leaves through any boundaryR$. Hence, it is sufficient to
consider the dynamics of the model in the domain®R¢. In this
region, the model can be considered has be mathematically
and epidemiologically well-posed. This shows that the total
population and the subpopulation
S(t),E(t),1(t), T(t)R(t), V(t)of the model are bounded and
is a unique solution. Hence, its applicability to studying
physical systems is feasible.

(6)

This is a positive invariant

Positivity and Boundedness of Model Solution in R

This shows that the total populationN(t), and the
subpopulation S(t),E(t),I(t), T(t), R(t),V(t)of the model
are bounded and is a unique solution. Hence, its applicability
to study physical systems is feasible.

Theorem 2

Suppose X = x,is a space of consecutive real number and
which are defined as

1
LG y) = (Tl )" az1 ()
X with the metric is called &lspace. If Y ®|x|® < ooor

absolutely convergent andL(x,y) = (Zf‘;llxi -y IQ)E, then
X with this metric is called an &?space.

Proof:

It can be checked that for each n:

0<x2+x+x+.. +x2 < (Ixq] + x| +

23] +... +1xn)? ®)
This will result to;
xf +x3 < (x| + |x21)? )

Therefore,

1
0< (2 +x2+x2+...4+x2)2 < |xq| + |xp| +
[xg|+... +lxnl,
If %% ilx,| converges,
convergent, then

1
0< (2 +x2+x2+...4+x2)2 < |xq| + |xp| +

that is X%_,|x,lis absolutely

gl +. .. +lxn| = Z7—q1xa] < o0 (10)

Therefore,

0<x,=x2+x2+x2+...+x2 <[22 4lxs]] <
(11)

These sequences Xx,is monotone increasing and bounded
above, it therefore converges. Thus _; X,converges
absolutely, ifx, € &1, then x,, € £?whereé! < &2. In case of
&1 denote the set of all sequences of x,of real numbers such
that Yo, x,is convergent absolutely. ie Xo—i|x,| <
cowhereas £2denote the set of all sequence x,,0f real numbers
such that Y%, x2 < ooconverges. From the proceeding x,, €

&' o x, € 2. §1CEZ Further, ifx, =5, then
n4'
¥ ilxpldiverges and thusx, € §. But X9 xZ=

Z;’f’zl%converges, implying thatx,, € £€2. We conclude that
na
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&l c &2and thusé! # &2, If (x,,Vyy,)are sequences of real
numbers, then;

Zn=1(xi — }ii)z < Zorfﬂlxiz +Xn-1 vt +

2[Xn- PR vl (12)
Therefore if X5, x;% < coand Y% y;2 < oothen Y&, (x; —
yi)? < cofor all n. The monotone increasing sequence

X, (x; — ¥:)?]is then bounded above and hence converges
ig- Yn=1(x; = ¥i)? < oo. Thus (x; — ¥;)* € §%if (xn, ) €
&e.

Consequently, considering the compartmental disposition.

= (S@.E®,10,T®),R@,V(®) € RENBE)

(13)
it is obtained as;
das 1
E=uN—ﬁ—S—(a+p+<p)S
dS
— —ﬁ S (a+p+@)S
dS
%_—(ﬁ+a+p+q))dt (14)

fS(t)_ f(ﬁ+a+p+(p)dt

InS(t) = - +a+p+e)dt

S(t) = Sy~ Brateredt 5 g

Att > 0,5(t) > 0

In the second compartment as deduced from the disease free
equilibrium it is obtained for E(t), I(t) and R(t).

dE

=Py 5 (0 +9)E

dt —(oc+p)E

E(t) > —(o+ @)dt

f aE f T g)dt
EQ) > (0+¢)
InE(t) = —(c + @)dt
E(t) = Ejt 9t >0
Att>0E() >0

Thirdly,
a_ e
dt

(15)

(y1+6+60+ @) (16)

1(t>
dl

fl(t)_ f(y1+5+6+<p)dt

Inl(t) = —(y1 +6 + 0 + @)dt

I(t) = [y~ t5+0+e)t 5 ¢

Att>0,I(t) >0
Also,

dT
E=PS+51_(V2+¢)T

T
dt -2t 9)
m = —(y, + @)dt

f ok - [0+ ot
InT(t) = —(y, + p)dt

T(t) = Tyt "2*9t > 0
Att>0,T(t) >0

€ @ +y )l +vy.T

(17

—(p + W)R

dt —(p + w)R
dR

RO 2 > —(¢ + w)dt

(18)
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dR
[ 7= @rwa
InR(t) = —(¢ + w)dt
R(t) = Ry™ @)t 5 ¢
Att > 0,R(t) >0

v _ S +n)V
= (p+m)

dV> e
a2 (p+m)

av
7] > —(p +n)dt

dv
[vwz-[@+ma
mV(t) = —(¢p +n)dt
V() = Vot @Mt > 0
Att >0V (t) >0
Equation (14) to (19) shows system (1) in the positive
quadrant, persisting in the attracting subset/, which is
compact, positively invariant, and influential, with a well-
posed, epidemiologically and mathematically represented
solution.
Disease Free Equilibrium State
The equilibrium state of non-infected individuals with
measles signifies a system devoid of measles, encompassing

(19)

Steady State Prevalence

It is crucial to highlight the dynamic nature of measles prevalence, especially its central role in sustaining outbreaks within a
population. To analyze the system at equilibrium, consider the set of equations in (1), where the equilibrium points represent

Kolawole and Akin-Awoniran
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individuals categorized as infected (I) and exposed (E)I =
E =0.
N =S"+E°+I"+T"+R +V"=0 (20)

I
uN—,BNS—(a+p+(p)S=0

I
By S—(@+@E=0

oE— (1 +6+6+¢@) =0

pS+38l— (Y, +9)T =0

1+ +yT—9R=0

aS—@V =0

When measles is of no spread, the disease classes are
subjected | = E = Oare considered at equilibrium where

I _ _ u
UN —pgS—(@a+p+)S=0,5=r"""n
- P
(a+p+9)(y2+¢)
— PLY2 Vo=
@(a+p+@)(y2+¢) (a+p+o)

Thus, the disease-free equilibrium yields:
(S0,Eo, 10, To, R, V) =

[ pu PUY2 au )
(@+p+9)’ 7 (a+p+@)(V2+9) p(a+p+@) (V2 +9)’ (a+p+o)
(21

the endemic states of measles prevalence. ® = (S°*,E*,[°,R*)and t > 0

aS—¢oV =0
St = Buap+(a+p+e) x _ B2uau+(a+p+e)
a?(a+p+@)+(at+p+p)’ a(o+@)(a+p+@)?+(atp+y)
. _ B2ouau+(a+p+@)
r1+8+0+@)[a(o+p)(a+p+@)*+(atp+)]

Buop+(a+p+¢)

(22)

Blouau+(a+p+¢)

1
T =
(72 +¢)(0!2(0!+p+¢)+(0!+p+¢)+(71 +5+P)la(c+p)a+p+4) +(0t+p+¢)]j

R* =

(V2 + @)[Brapu + (a + p + @) + BPopau + (a + p + @)

. Bapap + (a+p + ¢)
a?pla+p+o)+(at+p+oe)

The Disease Threshold R,

Ca(atpto)t(@tp+O0+@)+ i +S+@)Plalc+@)(a+0+p+ )2+ (at+p+ )]

The basic reproduction number, denoted asR,. To quantify the likelihood of new measles infections arising from a single
infectious individual in a previously unexposed population, we apply the next-generation matrix approach to construct the
system outlined in (1), with a focus on infectious compartments. In this method, the Fand V matrices are computed,
representing the rate of new infections and the rate of transitions into and out of the infected compartment, respectively. This
approach captures the dynamics of measles transmission and reinfection, emphasizing the importance of treatment as a critical
control measure. These matrices are obtained using a complex derivation from the equations in System (1),Rq = p(G — Al)
taking G = F X V~tand pis the spectral radius of the matrix |G — AI|.From the system of equation (1) it is obtained for matrix

. . (Vi)
FandV: F - of(x) Vi = ( ox; ) (23)
x;
and such that
Bl (c+@)E
f_<8)andv_(—aE+(y1+9+6+(p)1> (24)
then,
bu (o + ) 0
F‘(g”“‘p))V_( o (y1+9+6+(p))
Bu
-1__ 1 0 ((0 + @) 0 )
kv (a+p+p)(c+p) ((‘Hg“’)) 0) o 1 +t0+6+09)
R, Bu(a+e) (25)

T W(@tp+e) (11 +0+5+0) (0 +9)
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It results that the basic reproductive ratio determines the number of infected individual migrating to the subpopulation of
exposed and infected, as this affect the level of recovery form the spread of measles. The leading eigenvalue of the non-
invariant is the basic reproduction number of the disease model

Local Stability of the Disease-Free State

We examined the local stability of the disease-free state for measles by analysing the minimal recurrence rate impact. When
the recurrence rateR« < 1, the disease declines, to determine stability using a Jacobian matrix and a characteristic equation.
Lemma 1

The disease-free state of the model is locally asymptotically stableR+ < 1, otherwise R+ > 1if and only if the disease state
prevails.

Proof:

The disease-free equilibrium obtained as the Jacobian matrix of the system of (1) is evaluated at the disease free State using
the linearization thus;

(_ K 0 S 0 0 0\
(a+p+op) (a+p+o)
u
o @t o) 0 0 0 0
/EO=| 0 o - +0+8+9) 0 0 0 |
p 0 5 —(rz+9) 0 0
0 0 V1 12 - 0
a 0 0 0 0 -9
__u __u
(a+p+e) 0 (a+p+9) 0 0 0\| 10 0 0 0 0 O
u
_ 0 1.0 000
(@+p+e) @+ 0 0 0 0100 0
0 o —(y1+0+85+9) 0 0 0 |_’1 0 00100
p 0 ) —(2+9) O 0 \0 00 0 1 0/
0 0 Y1 2 -9 0 0 0000 1
a 0 0 0 0 -9
U U
it 0 ~ i 0 0 0
e B CRE OB 0 0 0 0
0 o -1 +0+6+¢9)— 23 0 0 0 =0
p 0 ) 2+ @) — A 0 0
0 0 Y1 12 —¢—1s 0
a 0 0 0 0 -9 — 4

Computing for the eigenvalues,| e, — Al | = 0, from the Jacobian matrix the respective eigen values of the matrix can be
obtained as;
—¢—2s 0 _ oy
0 —<P—/16_0 As =21 =—¢
(A=21)(B = 2)(C = 23)(D = A)(E = A5)(A = 26) = 0 (26)
The negativity of the invariants region with respective eigen values obtained for the model equation is asymptotically stable.

Local stability of endemic equilibrium point
Lemma 2

The regional resilience of the persistent equilibrium of the proposed model is locally asymptotically stable if and unstable
otherwise if R, > 1

Proof:
Suppose,S =x+ S E=y+E I=z+1""T=a+T" R=b+R"V=c+V" 27)
Linearizing equation (1), is then obtained as
u u
- 0 - 0 0 0
(a+p+o) (a+p+9)
_*  _
vl CR D) 0 0 0 0
Jeo = 0 o (L +0+5+9) 0 0 0
p 0 g ~(z+9) 0 0
0 0 Y1 Y2 -9 0
a 0 0 0 0 —o

I
,uN—ﬁNS—(a+p+(p)S=0

% = —Pxz(p + a + ¢) — pux + higher order + nonlinear terms...

% = Bxz(a+ ac)™* — (u + ¢ + p)y + higher order + nonlinear terms...

% =0y + (+0 +y, + @)z — y,z + Sa + higher order + nonlinear terms... -
% =pz+ 6c — (p + 6 + ¢)a + higher order + nonlinear terms... 29
% = (y, + ¢+)a + pb + higher order + nonlinear terms...

% = az — @c + higher order + nonlinear terms...

Jacobian matrix of the system of

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 196— 208

200



THE IMPACT OF MULTIFACETED... Kolawole and Akin-Awoniran FJS

i—2BL+a)t+¢) 0 RBA+a) t+¢) 0
@A+ +9) —(+rite) 20+a) +(6+y+9) 0 -0
0 1) —(+y,+ ) 0
0 0 (p+p+9) —(p+d5+9)

The resulting eigenvalue of the above matrix is obtained as;
CRAA+ )+ ) =)=+ 71+ 9) =) (P + V2 + 9) = 1) (= (6 + ) = 1) (—(2B(6 + )™ + ¢) — As5)
(-@Blp+a)t+p)—A) =0 (35
Ifa=-2B(1+a) L,b=—(+w,c=—T+y+u),d=—6+p (29)
It is therefore obtained that
(@=21)(b = 12)(c = A3)(d = A)(e = A5)(f = A6) = 0
A—[la+b+d)(c+f+f)+ab+cd] +A5[(a+e)b+d)+ef +cd]— [abd(c + b) + ae(c + e)]23
[bef(a+b) + bc(a+ b+ d)]A% + [ae + ad + bd + ac]A? + [(e + a) + (b + ¢)]A + abcdef =0
Therefore, the persistent resilience of the respective Eigen values in the model invariance region of R is asymptotically stable.

Global Stability of Disease Free Equilibrium

Employing Lyapunov function approach, we establish the global asymptotic stability of the proposed model for equation (1)
at the disease-free equilibrium, utilizing the Lyapunov algorithm.

Y (t,S,E,I,T,R, V) = CiI, + C,l,

_ “ pu PUY; ap
(So, Eo To, To, R, Vo) = ((a+p+<p)' 0.0, (at+p+@)¥2+9)’ @(atp+@)vate)’ (a+p+<p)) (30)

ay . N
—=GL+GL=0 ((ai():_(p) —(u+6+ (P)Il) + G0l — (u+ v + 9)]ly)
= _Cz(#+7’+‘l’))lz

dt
av
T (Co—Ci(p+ 8+ )L — (C

L(a+p+o)
ay a
T Ci(Co—Ci(p+ @ +y))h — (sz —Gu+y+ ‘P)) I
1 Bag

= = <
€1 = o’ 2 T iererm@rermarenn 1 =0
d_¥’<C< Bu(a + ¢) _(a+<p+h))1
dt = T\ua+p+ @) +8+9)o+e) (@te+y)) !
3 ( Bagp B Bag ) I

G+ +yDa+o+ydate+y) p@+e+yda+o+ydiate+y)?
d_¥’<< Bu(o + ¢) _1>1
dt " \ul@a+p+ )i+ +9)o+e)
Z—f SR —-1) (31)
It is pertinent that when at £ —> 00, % < 0. Substituting into the model system of equation (1) reveals that, based on LaSalle’s

invariance principle% = 0, is globally asymptotically stable whenever Ry > 1

Global stability for endemic equilibrium

Theorem 3

The Dulac criterion provides a technique in dynamical systems for proving the non-resistance of periodic orbits within a
specified region of the phase plane. In the context of a mathematical model of measles, this criterion can be extended to
examine the global stability of an equilibrium point, confirming that recurrent measles outbreaks cannot persist under the given
model conditions.

Proof:

For a dynamical system described by the differential equations:

d d

=N =90y (32)

The Dulac criterion states that if there exists a continuously differentiable function B(x,y) (called the Dulac function) such
that the expression:

Z(BCoY)F (6 3)) + 2= (B(x,1)g(x, 1)) (33)

is either strictly positive or strictly negative throughout a simply connected regionD of the phase plane, then there are no closed
trajectories (periodic orbits) contained entirely within D.
To apply this to determine the global stability of an endemic equilibrium (x*, y*)of a mathematical model, the endemic

equilibrium point(x*, y*). Also define the Dulac function B(x,y)and the expression %(B(x,y)f(x,y))+

= (B(x,9)9(x,)) as B(x,7)g(x,y) (34)

This shows that this expression is of one sign (either strictly positive or strictly negative) in the region of interest. If such a
Dulac function B(x,y) can be found, the system has no periodic orbits in that region, suggesting the global stability of the

endemic equilibrium if no other attractors exist. Hence, if 3B(x,y) € Clsuch that %(B(x,y)f(x,y))+

% (B(x,¥)g(x,y)) # 0inD. Then there are no closed trajectories in D.This criterion is useful in proving the global stability

of the endemic equilibrium when combined with other stability analysis techniques.
We employ this concept of Dulac’s criterion. Let X = (S, E, I, T, R, V)define the Dulac’s function

G= % The following system of equation are obtained;
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G§=%{ —ﬁLS—(a+p+(p)S}
Gl;f sz{ﬁ S_(G-HP)E}

G4 =2 (0E —(n +5+ )1}

1
T 51{p5+61 (2 + )T}

¢ L T R

g nltr, — @ + wR}

GdV—l{S +nV}
dt_SIa e

The above system of equations results to;
as {p.N BI (u+p+(p)}
G— —=——C
dt
B ﬁ(0+<ﬂ)E }
a W s
ﬂ _ {E_ UE(y1+8+(p)}
ac ~ st s

dar s +
G (2,8 _Gite)

dt 1 S SI

dR 1 T R
G_=_{ﬁ+1’2__‘P_}

dt SIS S S
d_V_{a (p+11V}

at U~ st

At t > 0 orbital resolution of the system of equations is given by

Kolawole and Akin-Awoniran

PR ko A G R G B o

d(GX) A B u (u+e)E 0 (eE  (p+a+yz)
at ﬁ{_ T (ptatde) 1. E{(<p+9+a+y1) T st } E{S_I - s

cinl] 3 (12l

d(GX)_@{A B y}+i{

dt aS|SI (p+a+d) 1| OE

SIS SI

or OR\(SI §

s (u+5)E {gE (¢+a+7z) [
(p+a+0+y,) ST 6]

+i{T+7 W+5)R}+i{l+1_w}+%{% (W@R}
o

SI N

SI SI

[(Bra+&)+B+o(yatate)] | [B+u+e)]

aGx) _ (G+p+a) sp+a)

at 4 [0n+0+8+9)] | [(atate)]

as obtained below.

dt

This result indicates that the system lacks closed orbits, meaning there are no periodic fluctuations in the number of infected
individuals. Epidemiologically, this suggests that sustained oscillations in measles cases do not occur, underscoring the
importance of treatment as a primary control strategy. By focusing on measles treatment, resource allocation can be optimized
to effectively reduce and eventually halt the rapid spread of the disease with time.

Sensitivity Analysis of R,

The primary aim is to assess the sensitivity of the basic reproduction number, by computing its derivative concerning all

d(GX):_{ﬁ(ﬁ+ﬂa+5)+ﬁf<p(yz+a+<p)+[(V1+9+a+5)+ﬁ+<p(n+a+(p)]

S

(35

a (T
+5{§+

(36)

FJS

relevant parameters. This analysis will result in the determination of the normalized forward sensitivity index, denoted as

R = Bu(o+e)
0 u(a+p+<p)(y1+6+<p)(o+<%)R o
9Ry _ Ry
Ro _Ro . B 012060007 — on
op M Ro
oRy _ 0k o _
Ry _ Ry P 10326737000 — 00 “ 7 =
op  Op R,
or, _ o8
Ry _ Ry 7 _ 01874342799 — 99
oy, Oy R,
oR, R, o _ %
Ry x 72 2012273618 = an
0y, a}’z Ro
0R, _ORy
52 =52 x = = 0.00000040

FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 196— 208

x £ =0.00130200
Ro

0.00130

x £ =0.15356728
Ry

x 2 = 1.00000000
Ro

(37

202



THE IMPACT OF MULTIFACETED...

Table 3: Sensitivity Analysis and Parameter Indices

Kolawole and Akin-Awoniran

FJS

Parameters

Sensitivity indices

B 0.07362
L 1.28373
a 0.03421
¥ 0.00125
) 1.10932
" 1.90243
o 0.59824
@ 0.19232

Table 3 shows that the sensitivity indices of are positively
invariant in R¥ the sensitivity indices depend on the values of
the each parameters ofR, and this brings about changes in the
values that will affect the behaviour of the threshold on the
spread or vanity of measles disease. Based on the table, we
can conclude that parameters are the most sensitive to the
basic reproduction number in equation (18) of the measles
model. Particularly, increasing the value of ¢ will result in a
96.96% increase inR+, while increasing the value of kwill lead
to a 91.52% decrease in Ry.

Numerical Simulation

Homotopy Perturbation Method (HPM) is an elegant and
powerful method to solve linear and non-linear partial
differential equations. As we know to get an exact solution of
non- linear partial differential equation is very difficult, so any
kind of perturbative approach is acceptable depending on its
criteria. HPM provides an analytical solution by using the
initial conditions. It is interesting to note that only a few terms
are required to obtain a most accurate approximate solution.
This section, we have illustrated the basic idea of homotopy
perturbation method to apply in non-linear equations.
Consider the following non-linear differential equation of the
form.

Aw)—f(r)=0,reQ (38)
Subject to the boundary conditions:

ou
Bz(u,a—n)zo,rEF, (39)

Where A is a general differential operator, B is a boundary
operator, f(r) a known analytical function and [is the
boundary of the domainQ. In general, one can divide the
operation A into two parts: Linear and non-linear. That means
A=L+N

Where L is Linear and N is the non-linear,

Hence, equation (3) can now be rewritten as
Lw)+Nw+f(r)=0reQ (40)

By the homotopy technique, one can construct a homotopy in
the following way

v(r,p):2x[01] >R This satisfies

H(V,P) = (1 -P)[L(v) — L(up)] + P[AW) — f(r) =
0,Pel0l],reQ (41)
Constructing a homotopy perturbation method using an
algorithm developed on each compartment of the model. We
conduct the numerical simulation on the mathematical model
using the concept of homotopy perturbation method which
brings about creating the following correctional scheme for
the model equation.

The differential equation of the model formulation on the use

of homotopy perturbation method technique is illustrated as;

=pg+p (G =N =S = @+p+9)5]) =0

dE dE SI 1
A-pZ+p(E- - pis—(oc+p)E]) =0

di di
A-D2+p(S-[E-n+5+p)1]) (@2

dR dR _
(1—p)£+p(g— [0S + 81 = (v + 9)T]) = 0
(1—p);+p(5— [Y11+Y2T—<P+wR]) =0

dR dR
A-pG+p(G-laS—9+v])=0
The following correctional series are assumed as solutions for
(1) such that
S(t) = Xk=oP"sk(6), E(t) = XR_op“ex (), 1(t) =

k=0 P ik (), T(1) = Ti=o P t;c(0) , R(D) =

Thoo D1 (), V(1) = Zi—o P vic ()
This series converges as p tends to in each of the iterations is

subjected to the initial conditions ast — 1. Evaluating (32)
and comparing coefficients of p™ yields the following at n =

1
ds dE, dl, dv, dR, av,
dt 7 dt 7 dt dt " dt " dt
(43)

Solving these equations using the initial constraints

uN—ﬁ%S—(a+p+<p)S=O

BrS—(c+@)E=0

cE—{y1+6+9)=0

pS+6l—(y, +9)T =0

yil+v,T—(p+w)R=0

aS—(p+nV =0

So(t) = 50, Eg(t) = eq, In(t) = iy, Ry(t) = 1y, at this initial

condition, the result obtained from (32) is deduced as

s(t) = (uN — Bsoeq — (@ + p + @) + so)t

e1(t) = (Basolo — (0 + @)asolo — Hep + €€g)t

i1 (8) = (oeg — (y1 + 6 + p)aey — pio — 8ig — pig)t
(44)

t1(t) = (aegiy — pro — Bio + €eg)t

() = (y1 + v2ae — paegiy — pry — Pio + €eg)t

v1(8) = (@ — paegiy — ury — Piy + €eo)t

The successive iterations of the results obtained at n = 2,

sp(t) =

27 \42uBysy — 2uPire — Bi2So — Brg — B2y — ub — €y

e;(t)

_ —ltz <a2i0250 + adigsg + 3apios, + argse — aiegsy + aey Sy + aﬁioso>
T2 —aPigso — aig — ptPeq — 2uey — y2eq
I(t) = =S t2(aPioso — 42Ty + 2uTsy — 2ufvo + f2so +
Bso — ﬂzvg —up)
tL@) = _5t2(5pio — WPty + 2ueiy + y2ip — peeg)
1 , . ,
15 (t) = —t2(8pio — WPro + 2ueio + y2io — peeg) (45)
1 .
v (t) = _gtz(@l)lo — UPey — peeg + 2yz¥1€07o —
boeeq +y181)
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Subsequently, further iterations is carried out from the result of (52) at n = 3 results;

S3c(8) =
13S0 + +21B1So — 20BaS0 + B2So + B2BSo — Bo — B2 voarpiSg + a?Priosy — a?Baigve — aBiy + Sigso +

. 2apioSo + apoSo + 21B1So — 21uPyvo — Pi°So + 5B2B1Se — BaBrvo — Bo Vo — 1O — OB — aceysy + aBiySo + u2so + 3uPiso
3 .
e —2uP1vo — Bi’So + 4B2B1So + +21B1So — 2uP1ve — Br7so + B2BrSo — 5B2B1vo — 3B Vg — aigSo — sg — 3P1So + 28,00 + 6 — b — 6
&1 — 2B,y — B2 vo — 1O — O — 5Py15o — B2V + 1w — 3uPySo — 21BaVo + Br2So + B2BrSo — BaBrvo_ + 82ig + 28uiy + 20piy — Soeq + pPiy

+2uplio, + 3auioSe + apese — 3aceySy + aoySo + afiioSe — igSe + 3apioSe + APeSy — 2a0Sp + A1ySo

e3(t)

a’iy?sg + adigsy + 3auioSo + apSy — aoeysy + aoy,So + afyioSo + 2pP1So — 2uPrvo — Br2s0 + 5828150 — B2Brvo — B2 *vo — 16
_ —ltz (—aﬁziovo —3afiy — pley — 2ucey — aley — Uy + 2upiy + prip + aPyiose — 4adiysy + 3apigsy + apesy — 2adeys + +adiysy + 3apiysy + aposo\‘
6 —aoeysy + a0y So + aPrioSy — aPrigvy — abiy — u’ey — 2uoey — a’ey — 8piy — uPry — 3uPiSo + Br’so + BaBrSo — BaBrve — B2°vo — 0B,
\+ + adiyseaey — puig — 8ig — pig + 2upiy — 2ucey + piy — poey — a’eq /

1(t)
aciysy + 8%ig + 28uiy + 28piy — Saeq + p2iy + 2upiy — 2ucey + —putry + 2upio + pZip + aByipsy — 4adigsy + 3apizse + apese — Zazfeos\

_ —ltz /+a6ioso + 3apioSo + apeSe — ageysy + oy So + pPip + —Po v — uO — Ofy — acegsy + afy e + HSo + 3uPiSo — 2uPyv — paey — ae,
6 +2upiy + piy + aPyiosy — 4abiysy + 3apigsy + apSy — 2aceys + +adiysy + 3apiysy + apgs,
K—aaeoso + aoy4So + aPyioSo — aPiove — abiy — pey — 2ucey — aey — Spiy
©B1igSo — afaigvy — abiy — ey — 20 — paeysy + aoyySo + afiioSo + 2uP1So — aaeoso>

+aoy 5o + eg — a%eq — Spiy — uProadipseoey — pip — poey — a2ey

ts(t) = —%ﬂ(

r2(t)
1, (8piy — pPro + 2upin + p2iy + —02ey — u*ry + 2upiy + p2iy + aPyiosy — 4abinS + 3apioSy + apesy — 2a0eys + +adiysy + 3apiosy + aposy
6 \—aoceys, + aoy sy + afyios — poe,

v ()

__2,(8pioc— W2y + 2upiy + plip + —aley — pPry + 2upiy + p2ip + aPyiose — 4adiyse + 3auiose + apeSy — 2aceys + +adiysy + 3apiosy + apgsy
37 \—aoeysy + aoy so + apyios — poe,

This can be furthered till the desired number of iterations are obtained. Hence, the summary of iterative solutions to each model

compartment is obtained as;

S(t) = Zi:o Sk(t) ’ E(t) = Zz:o ek(t) ’ I(t) = 2]%:0 ik (t) ’ T(t) = ZI?:',:O tk(t) ’ R(t) = ZI?:',:O Tk (t) ’ V(t) = Zi:o Vg (t)'

And evaluating these results using the corresponding model parameters of each class given by
a=0.008,6 =04,u=10,T=0.1,4=219,y = 1.263,5 = 0.002,¢ = 0.03,

eg = 653930,s = 500000, i, = 23890,y = 14730 }
It is therefore obtained that, the initial values of the model parameters results is defined by equation below;
S(t) = 2700 — 103.84t + 0.82753t% — 0.00182736365¢3
E(t) = 81.2 + 773.12t — 127.27363t% + 0.8290276352t3 (47)
1(t) = 16.7 — 0.0329¢ + 0.081522t2 — 0.187263672365t3

T(t) = 16.7 — 0.0329t + 0.081522t% — 0.187263672365¢3
R(t) = 11.2 — 0.02383t — 0.111827362t% + 1.282735836139¢3

V(t) = 142 — 0.8635¢t — 0.87379t2 — 1.202372¢3
The approximate results of each class are evaluated using their respective baseline values in obtained from table 3. We also
suggest the following population data set as initial values given by
so = 1327363,e, = 1923732,iy = 1112837,y = 136833,15 = 2182733,v, = 717931. Thus we obtain the following
series of results embedding the parameters whose influence on the dynamics of measles transmission are to be analysed as;

0.66212%¢? — 1.82732a3
—71625.T?
123.8273 + 1.9273¢ +29.8635u* |2 —0.8272526° J’21'28263“4 3
—1.8363¢% — 27.1y ) + 927286837 5 — | +18273.9273a" + 817.282535 A
+8126.916a%y —625422.753a — 1.29233209
+5243.91u° — 11.82636y

/—69.3086134]/ \ /11.308282860{2 - 80.263392030(3\

—0.181786136¢ ) —9.8173a + 0.31334a**c
k+0.0938287a2 )%+ k—1.891383a3c +182.926a> )

(46)

S(t) = 1000 +(

SEA

—23.3723648t
E(t) = 30 +( +0.003823646a2 |t —
—12.8724643«a +0.0000493608c +0.0.1753c — 16.8625«

—5.292993669a +1.23232a% — 0.9021a°

127.0391180\ , [—0.004499284709¢3 +320.2194878)
I(t) = 28 — 0.22133t — <+0.63524£2 )% —| —0.138363a + 4.407401276T*> =
—0.7283y +2.46825 - 107848 — 0.0043397258
1379.81616\ , [—0.0089379¢3 +320.2194878 \ |
T(t) = 2763 — 0.98327t — <+0.2634go2 )t— — | —0.138363a + 4.82726T? =
—0.7283y, +2..27623- 10788 — 0.092626f

Y 4 [ +262457 + 0.7236752367325u %

+9.760261322373

o [—0.004499284709¢% +320.2194878) |

= —| —0.138363a + 440740127672 =
+2.46825 - 10788 — 0.004339725p

1817.52313 ., [13.49785413a3 — 8249.759899a*
R(t) = 40 + (46.18360 + 37.68¢)t — (+45.9850488T )
—2044.38600052

127.0391180
V(t) = 28 — 0.22133¢ — <+0.6352452 )
—0.7283y
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RESULTS AND DISCUSSION

The interpretation of numerical simulation conducted through iterative steps using homotopy perturbation method is depicted

pictorially below.
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Figure 2: Impact of Progression Rate (p) on Measles Prevalence
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Figure 3: Impact of Treatment Rate (§) on Measles Prevalence
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100 l

Infected population (1)
8
—
-

o 10 20 30 40 50 60 70 80 80 100
Exposed popuiation (E)

Figure 5: Infection at Equilibrium:R, < 1. In this case Measles Disease Dies out (Dark spot) with an Assumed
Parameter Base Line
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Figure 6: Endemic EquilibriumR, > 1. In this case Measles Disease Persist in the Population (dark
spot) where all Parameter Values are Assumed for its Base Line

Discussion

The study points out that vaccination is essential for getting
rid of measles. Although reaching high vaccination coverage
is still vital, our findings suggest that other things like vaccine
hesitancy increasing awareness and education play a major
role in curbing disease spread. A combination of medical and
behavioral measures is more successful in decreasing the
number of measles infection cases and the death rate. These
programs must be applied early and adequately for disease
control to continue. For this research, Maple software was
used to perform numerical simulations and visualize the
effects of changing intervention parameters on the disease.
The outcomes are shown in graphs and are thoroughly
reviewed. Figure 1 shows that increasing vaccination rates
lowers both the numbers of people who are not vaccinated and
those who get the disease again, also the higher the
vaccination rates, the fewer infected persons there are. Figure
2 proves that the number of infected cases lowers due to
vaccination. From Figures 3 and 4 we deduce that increasing
the number of people treated greatly reduces infections and
when people receive enough vaccinations, the numbers of
both infected and immunized individuals fall significantly,
proving a strong link between treatment and
vaccination.Figure5, 6 clearly show that in contrast, an
endemic equilibrium means the disease continues in the
system, mainly because the rate of vaccination used and the
level of behaviors help to control how the disease spreads.
Still, further highlighting the role of individual’s plays helps
reduce the numbers of people suffering from measles.

CONCLUSION

The method used in this paper is homotopy perturbation
which led to the creation of a valid numerical answer
describing the effects of strong treatment vaccination efficacy
on measles. The model was able to give accurate predictions
that led to the RO of measles being found below unity for this
approach. Numerical output was then run to see the effects of
vaccination on measles within the population and detailed
analysis of the graphs was done to understand the specific
signals of both experimental and biological changes affecting
different groups with time. Even so, using oral vaccine
effectively and improving environmental cleanliness is useful
for addressing the ongoing problem of measles and setting up
strategies to prevent its spread and demolish in the short run.
Raising awareness and providing information through

education programs is very important for combating the
spread of measles in the short run.
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