
ASSESSMENT OF SELECTED PLANT…            Ojo et al., FJS 

 FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 196– 208 196 196 

 

8 

 

THE IMPACT OF MULTIFACETED VACCINATION INTERVENTIONS ON MEASLES ERADICATION: A 

BEHAVIORAL ANALYSIS OF THE SEITRV EPIDEMIC MODEL 

 

*1Mutairu Kayode Kolawole and 2Bukola Olayemi Akin-Awoniran 

 
1Osun State University, Osogbo 

2Osun State College of Technology Esa-Oke 

 
*Corresponding Author’s Email: mutairukolawole@uniosun.edu.ng 

 

ABSTRACT 

Despite the effectiveness of the vaccine, measles is still a major worldwide health concern. Human behavior, 

including vaccine reluctance and reactions to health initiatives, is examined in this study. This study uses a 

thorough SEITRV (Susceptible–Exposed–Infectious–Treated–Recovered–Vaccinated) model to examine how 

different vaccination campaigns impact measles transmission via the lens of human behavior. Using both 

epidemiological and behavioral characteristics, an SEITRV model was created to mimic the spread of measles. 

We modeled treatments including treatment availability, education campaigns, and mass and targeted 

immunization. Simulations assessed how public behavior affects the spread of disease using data from previous 

outbreaks. According to simulation studies, vaccination intervention has a major impact on how measles 

outbreaks develop. Models that took vaccination awareness into account. Strategies that combined strong public 

education with high vaccination rates, in particular, showed the biggest drops in disease prevalence. These 

results highlight how ineffective vaccination coverage is on its own in controlling disease This study 

emphasizes that mass vaccination for controlling measles and behavioral variables like vaccination reluctance 

and public response to health campaigns must also be addressed by public health methods. The efficacy of 

disease control initiatives is increased when medical interventions are combined with focused initiatives to 

change public perceptions and behavior. Therefore, effective measles containment and eventual eradication 

require a dual focus on clinical and behavioral interventions. 
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INTRODUCTION 

The fast-spreading Morbillivirus is what causes measles and 

this disease is well known for causing serious health 

problems. Generally, running a fever, getting a rash, red eyes 

or cough appear about 8–12 days following contact. Since 

recent outbreaks happened in areas where the vaccine is less 

common, it is clear we must learn more about Disease A and 

see how spreading awareness affects its spread. Since the 

disease spreads very fast, several strategies are necessary to 

ensure it is completely wiped out (WHO, 2025; Yunus& 

Olayiwola, 2025; Adewole (2022); Kumar et al., 2022; Peter 

et al., 2024). Epidemiologic tools with real information are 

practical for studying how measles spreads, but carefully 

looking at people’s actions explains how epidemics, 

population size and control strategies fit together. Control 

strategies can make it clearer how disease spreads and is 

controlled in a population by lowering the disease burden 

while staying within resource constraints and being aware of 

the main characteristics of the epidemiological models 

(Wireko et al., 2024; Phillipp 2020; Adewale et al., 2014). 

Many studies have shown that mathematical models are very 

helpful in explaining and managing the spread of infectious 

diseases (Kolawole, 2024; Kolawole & Olayiwola, 2016; 

Kolawole et al., 2022a; Kolawole et al., 2022b; Olayiwola et 

al., 2025). They create order in understanding transmission, 

project different results using different examples and show the 

impact of different strategies. By changing epidemiological 

data into measurable factors such models assist in deciding 

effective public health policies and applicable actions 

(Vynnycky et al., 2018; Oh et al., 2022; Suwoyo et al., 2023; 

Kolawole et al., 2023; Yunus & Olayiwola, 2025). As a result 

of these insights, response and readiness are improved and 

limited resources are better distributed to benefit most people. 

Vaccination plays a key role in preventing different types of 

infectious diseases from spreading. To be effective, 

vaccination programs depend on reaching and serving 

individuals equally and they must have high population 

coverage (Kolawole, 2025; Yunus & Olayiwola, 2025a; 

Yunus & Olayiwola, 2025b; Yunus & Olayiwola, 2024; 

Olayiwola et al., 2023; Plans-Rubio, 2020). Mathematical 

studies have shown that using vaccines can bring about a drop 

in the spread of diseases, fewer cases of sickness and a 

possible end to diseases such as measles. They also underline 

the fact that both public participation and a well-run process 

matter and that public health depends on a balance between 

medical factors and the parts of life that affect health. 

Examining how vaccination supports disease control and 

elimination stresses immunization’s major role in building the 

overall health of people everywhere. These epidemics are 

frequently caused by issues including vaccine hesitancy, 

unequal vaccination coverage, and vaccine administration 

delays. It is crucial to comprehend how human behavior 

shapes vaccine dynamics in order to eradicate measles. An 

innovative SEITRV (Susceptible–Exposed–Infectious–

Treated–Recovered–Vaccinated) epidemic model that 

integrates behavioral responses into measles transmission and 

control is presented in this work. This paradigm incorporates 

several vaccination techniques, such as reactive campaigns 

and routine immunization, treatment-seeking behavior, and 

public awareness, which is not the case with traditional 

models. The model mimics the ways in which these complex 

actions interact with community behavior to affect how 

measles epidemics develop. The novelty of this research lies 

in its comprehensive behavioral integration within a 

compartmental epidemic model and its ability to assess the 

effectiveness of combined interventions. This approach 

provides deeper insights into the design of more adaptive and 

targeted vaccination policies, helping public health authorities 
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maximize the impact of immunizations programme and move 

closer to global measles eradication. 

 

MATERIALS AND METHODS 

Model Formulation 

Based on the Adewole (2022), this paper then develops a 

compartmental mathematical model to explain the dynamics 

of transmission of measles in a population. It includes 

effectively the major disease phases and primary public health 

measures, including treatment and vaccination, by 

subdividing the population into six compartments, 

Susceptible (S), Exposed (E), Infectious (I), Treated (T), 

Recovered (R), and Vaccinated (V). It describes infection by 

contact, the process of exposure to infectiousness, treatment, 

recovery, vaccination and loss of immunity. The important 

control measures, which include vaccination, treatment, and 

creation of awareness among the population, are clearly 

included. Another assumption that the model takes into 

account is relapse because of immunity diminution and 

natural death. Its dynamics are biologically realistic as well as 

mathematical consistent, well-posed both analytically and 

numerically, and offer a solid mathematical platform to 

comprehend the dynamics of measles and test interventional 

strategies. The system of equations is thus depicted in (1) 

below with model description below in table 1 which give 

description of parameters, values, and references 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝛽

𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 

𝑑𝐸

𝑑𝑡
= 𝛽

𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛾1 + 𝛿 + 𝜑)𝐼   (1) 

𝑑𝑇

𝑑𝑡
= 𝜌𝑆 + 𝛿𝐼 − (𝛾2 + 𝜑)𝑇 

𝑑𝑅

𝑑𝑡
= (𝜃 + 𝛾1)𝐼 + 𝛾2𝑇 − (𝜑 + 𝜔)𝑅 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − (𝜑 + 𝜂)𝑉 

as𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑇(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0, 𝑉(𝑡) ≥
0 and is subjected to an initial condition  0 < 𝑇 ≤ 1 

 

Table 1: Description of Variables 

Variable  Description 

𝑆(𝑡) Susceptible class 

E(t) Exposed class 

I(t) Infected class 

T(t) 

R(t) 

V(t) 

Treated class 

Recovered class 

Vaccinated class 

 

Table 2: Description of Parameters and Values 

Parameter  Description Values 

𝑁 Total population 0.1625 

𝛽 Rate of transmission from infected individuals to susceptible individuals 0.001 

𝜎 Rate at which exposed individuals become infectious 0.5 

𝛾1, 𝛾2 Recovery rate of infectious individuals  0.2 

𝜑 Natural mortality rate 0.03 

𝛿 Rate of treatment effectiveness i.e. treatment reduces transmissibility or severity 1.0 

𝛼 Rate of vaccination 0.0016 

𝜌 Awareness and enlightenment rate i.e. influences the probability of vaccination and decreases 

the susceptible population by encouraging self-protection or behavior changes) 

0.113 

𝜃 

 

𝜂 

𝜔 

Academic program intervention which promotes better health-seeking behaviour and treatment 

compliance 

Vaccine waning rate        

Loss of immunity rate     

1.0126 

 

0.3 

0.5   

 

Existence and Uniqueness of the Model Solution 

The model in equation (1), which represents the spread of an 

epidemic disease within a human population, requires that its 

parameters be nonnegative for its existence and uniqueness of 

the model solution. To ensure that the system of differential 

equations in equation (1) is both mathematically valid and 

epidemiologically sound, it is important to establish that the 

model’s state variables remain nonnegative. Equation (1) is 

considered well-defined at the initial point if the initial 

conditions are nonnegative.𝑆(0) = 𝑠0, 𝐸(0) = 𝑒0, 𝐼(0) =
𝑖0, 𝑇(0) = 𝑡0, 𝑅(0) = 𝑟0, 𝑉(0) = 𝑣0; In that case, the 

solutions of system (1) will persist in being nonnegative 

throughout their evolution, 𝑡 > 0and that these positive 

solutions are bounded. We thus apply the following theorems. 

Theorem 1  

Let (𝑥, 𝑦)be distinct points of normed linear space (𝑋, ‖⋅⋅
⋅‖)overℜ. Then the map of 𝑝: [0,1] ⊆ ℜ → (𝑋, ‖⋅⋅⋅‖) such 

that 𝑝(𝜆) = 𝜆𝑥 + (1 − 𝜆)𝑦is continuous on [0, 1]. 

Proof: 

Let 𝜆0 ∈ [0,1]then 𝑝(𝜆0) = 𝜆0𝑥 + (1 − 𝜆0)𝑦for any𝜆0 ∈
[0,1], ‖𝑝(𝜆) − 𝑝(𝜆0)‖ = ‖(𝜆 − 𝜆0)𝑥 + (𝜆 − 𝜆0)𝑦‖ 
≤ |𝜆 − 𝜆0|(‖𝑥‖ + ‖𝑦‖)   (2) 

If 𝜀 > 0is given, let 𝛿 =
𝜀

‖𝑥‖+‖𝑦‖
.If|𝜆 − 𝜆0| < 𝛿, then 

the‖𝑝(𝜆) − 𝑝(𝜆0)‖ < 𝜀. Therefore, p is continuous at𝜆0. 

Sınce 𝜆0 is an arbitrary point in [0, 1]. Then p is continuous 

on [0, 1]. Let X be a linear space overℜ. If (x, y) are distinct 

points of X, the set 𝜆𝑥 + (1 − 𝜆)𝑦lies in 0 ≤ 𝜆 ≤ 1 

Hence, the solutions of system (1) are bounded if we consider 

the total population. The variation in the total population 

concerning time is given by: 

𝑁(𝑡) = 𝑆(𝑡) + E(𝑡) + I(𝑡) + 𝑇(𝑡) + R(𝑡) + 𝑉(𝑡) 
     (3) 

The variation in the total population concerning time is given 

by: 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑆(𝑡) + E(𝑡) + I(𝑡) + 𝑇(𝑡) + R(𝑡) + 𝑉(𝑡)) 

     (4) 

Such that  
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𝑑𝑁(𝑡)

𝑑𝑡
= 𝜇 − 𝜑(𝑆 + 𝐸 + 𝐼 + 𝑇 + 𝑅 + 𝑉) ⇒ 𝑁*(𝑡) ≤ 𝜇 − 𝜑𝑁

     (5) 

Hence, it is obtained that 

𝑁*(𝑡) + 𝜑𝑁 ≤ 𝜇, using the integrating factor concept on the 

total population N(t) and this leads to  

Firstly,  

𝑁(0) =
𝜇

𝜑
+ 𝐾𝑒−𝜇(0), 𝐾 = 𝑁(0) −

𝜇

𝜑
 resulting to 

Thus, substituting (6) into (5) as time progressively increases 

yields: 

𝑙𝑖𝑚
𝑡→∞

𝑁(𝑡) ≤ 𝑙𝑖𝑚
𝑡→∞

[
𝜇

𝜑
+ (𝑁(0) −

𝜇

𝜑
) 𝑒−𝜇𝑡] =

𝜇

𝜑
 (6) 

Then𝑁(0) ≤
𝜇

𝜑
, then𝑁(𝑡) ≤

𝜇

𝜑
.   This is a positive invariant 

set under the flow described by (6) so that no solution path 

leaves through any boundaryℜ+
6 . Hence, it is sufficient to 

consider the dynamics of the model in the domainℜ+
6 . In this 

region, the model can be considered has be mathematically 

and epidemiologically well-posed. This shows that the total 

population and the subpopulation 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡)𝑅(𝑡), 𝑉(𝑡)of the model are bounded and 

is a unique solution. Hence, its applicability to studying 

physical systems is feasible. 

 

Positivity and Boundedness of Model Solution in ℜ+
6

 

This shows that the total population𝑁(𝑡), and the 

subpopulation 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑉(𝑡)of the model 

are bounded and is a unique solution. Hence, its applicability 

to study physical systems is feasible. 

Theorem 2 

Suppose 𝑋 = 𝑥0is a space of consecutive real number and 

which are defined as  

𝐿(𝑥, 𝑦) = (∑ |𝑥𝑖|
𝑛
𝑖=1

Ω
)

1

Ω
  Ω ≥ 1 (7) 

X with the metric is called 𝜉𝑛
Ωspace. If ∑ |𝑥|Ω < ∞∞ or 

absolutely convergent and𝐿(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|
∞
𝑖=1

Ω
)

1

Ω
, then 

X with this metric is called an 𝜉Ωspace. 

Proof: 

It can be checked that for each n: 

0 ≤ 𝑥1
2 + 𝑥2

2 + 𝑥3
2+. . . +𝑥𝑛

2 ≤ (|𝑥1| + |𝑥2| +
|𝑥3|+. . . +|𝑥𝑛|)

2    (8) 

This will result to; 

𝑥1
2 + 𝑥2

2 ≤ (|𝑥1| + |𝑥2|)
2   (9) 

Therefore, 

0 ≤ (𝑥1
2 + 𝑥2

2 + 𝑥3
2+. . . +𝑥𝑛

2)
1

2 ≤ |𝑥1| + |𝑥2| +
|𝑥3|+. . . +|𝑥𝑛|,  
If ∑ |𝑥𝑛|

∞
𝑛=1  converges, that is ∑ |𝑥𝑛|

∞
𝑛=1 is absolutely 

convergent, then  

0 ≤ (𝑥1
2 + 𝑥2

2 + 𝑥3
2+. . . +𝑥𝑛

2)
1

2 ≤ |𝑥1| + |𝑥2| +
|𝑥3|+. . . +|𝑥𝑛| = ∑ |𝑥𝑛|

∞
𝑛=1 < ∞  (10) 

Therefore, 

0 ≤ 𝑥𝑛 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2+. . . +𝑥𝑛

2 ≤ [∑ |𝑥𝑛|
∞
𝑛=1 ] < ∞ 

     (11) 

These sequences 𝑥𝑛is monotone increasing and bounded 

above, it therefore converges. Thus ∑ 𝑥𝑛
∞
𝑛=1 converges 

absolutely, if𝑥𝑛 ∈ 𝜉
1, then 𝑥𝑛 ∈ 𝜉

2where𝜉1 ≤ 𝜉2. In case of 

𝜉1 denote the set of all sequences of 𝑥𝑛of real numbers such 

that ∑ 𝑥𝑛
∞
𝑛=1 is convergent absolutely. i.e ∑ |𝑥𝑛|

∞
𝑛=1 <

∞whereas 𝜉2denote the set of all sequence 𝑥𝑛of real numbers 

such that ∑ 𝑥𝑛
2∞

𝑛=1 < ∞converges. From the proceeding 𝑥𝑛 ∈

𝜉1 ⇔ 𝑥𝑛 ∈ 𝜉
2i.e. 𝜉1 ⊆ 𝜉2. Further, if𝑥𝑛 =

1

𝑛
3
4

, then 

∑ |𝑥𝑛|
∞
𝑛=1 diverges and thus𝑥𝑛 ∉ 𝜉

1. But ∑ 𝑥𝑛
2 =∞

𝑛=1

∑
1

𝑛
3
4

∞
𝑛=1 converges, implying that𝑥𝑛 ∈ 𝜉

2. We conclude that 

𝜉1 ⊆ 𝜉2and thus𝜉1 ≠ 𝜉2. If (𝑥𝑛, 𝑦𝑛)are sequences of real 

numbers, then; 
∑ (𝑥𝑖 − 𝑦𝑖)

2∞
𝑛=1 ≤ ∑ 𝑥𝑖

2∞
𝑛=1 + ∑ 𝑦𝑖

2∞
𝑛=1 +

2[∑ 𝑥𝑖
2∞

𝑛=1 ]
1

2[∑ 𝑦𝑖
2∞

𝑛=1 ]
1

2   (12) 

Therefore if ∑ 𝑥𝑖
2∞

𝑛=1 < ∞and ∑ 𝑦𝑖
2∞

𝑛=1 < ∞then ∑ (𝑥𝑖 −
∞
𝑛=1

𝑦𝑖)
2 < ∞for all n. The monotone increasing sequence 

[∑ (𝑥𝑖 − 𝑦𝑖)
2∞

𝑛=1 ]is then bounded above and hence converges 

i.e. ∑ (𝑥𝑖 − 𝑦𝑖)
2∞

𝑛=1 < ∞. Thus (𝑥𝑖 − 𝑦𝑖)
2 ∈ 𝜉2if (𝑥𝑛 , 𝑦𝑛) ∈

𝜉2. 

Consequently, considering the compartmental disposition. 

Γ = ((𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑉(𝑡) ∈ ℜ6
+: 𝑁(𝑡)

𝜇

𝜑
) 

     (13) 

it is obtained as; 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝛽

𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 

𝑑𝑆

𝑑𝑡
≥ −𝛽

𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 

𝑑𝑆

𝑆(𝑡)
≥ −(𝛽 + 𝛼 + 𝜌 + 𝜑)𝑑𝑡   (14) 

∫
𝑑𝑆

𝑆(𝑡)
≥ −∫(𝛽 + 𝛼 + 𝜌 + 𝜑)𝑑𝑡 

𝐼𝑛𝑆(𝑡) ≥ −(𝛽 + 𝛼 + 𝜌 + 𝜑)𝑑𝑡 

𝑆(𝑡) ≥ 𝑆0ℓ
−(𝛽+𝛼+𝜌+𝜑)𝑡 > 0  

At𝑡 > 0,𝑆(𝑡) > 0 

In the second compartment as deduced from the disease free 

equilibrium, it is obtained for E(t), I(t) and R(t). 
𝑑𝐸

𝑑𝑡
= 𝛽

𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸 

𝑑𝐸

𝑑𝑡
≥ −(𝜎 + 𝜑)𝐸 

𝑑𝑆

𝐸(𝑡)
≥ −(𝜎 + 𝜑)𝑑𝑡    (15) 

∫
𝑑𝐸

𝐸(𝑡)
≥ −∫(𝜎 + 𝜑)𝑑𝑡 

𝐼𝑛𝐸(𝑡) ≥ −(𝜎 + 𝜑)𝑑𝑡 

𝐸(𝑡) ≥ 𝐸0ℓ
−(𝜎+𝜑)𝑡 > 0   

At 𝑡 > 0,𝐸(𝑡) > 0 

Thirdly, 
𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛾1 + 𝛿 + 𝜃 + 𝜑)𝐼  (16) 

𝑑𝐼

𝑑𝑡
≥ −(𝛾1 + 𝛿 + 𝜃 + 𝜑)𝐼 

𝑑𝐼

𝐼(𝑡)
≥ −(𝛾1 + 𝛿 + 𝜃 + 𝜑)𝑑𝑡   

∫
𝑑𝐼

𝐼(𝑡)
≥ −∫(𝛾1 + 𝛿 + 𝜃 + 𝜑)𝑑𝑡 

𝐼𝑛𝐼(𝑡) ≥ −(𝛾1 + 𝛿 + 𝜃 + 𝜑)𝑑𝑡 

𝐼(𝑡) ≥ 𝐼0ℓ
−(𝛾1+𝛿+𝜃+𝜑)𝑡 > 0   

At 𝑡 > 0,𝐼(𝑡) > 0 

Also,  
𝑑𝑇

𝑑𝑡
= 𝜌𝑆 + 𝛿𝐼 − (𝛾2 + 𝜑)𝑇 

𝑑𝑇

𝑑𝑡
≥ −(𝛾2 +𝜑)𝑇 

𝑑𝑇

𝑇(𝑡)
≥ −(𝛾2 + 𝜑)𝑑𝑡   (17) 

∫
𝑑𝑇

𝑇(𝑡)
≥ −∫(𝛾2 + 𝜑)𝑑𝑡 

𝐼𝑛𝑇(𝑡) ≥ −(𝛾2 + 𝜑)𝑑𝑡 

𝑇(𝑡) ≥ 𝑇0ℓ
−(𝛾2+𝜑)𝑡 > 0   

At 𝑡 > 0,𝑇(𝑡) > 0 
𝑑𝑅

𝑑𝑡
= (𝜃 + 𝛾1)𝐼 + 𝛾2𝑇 − (𝜑 + 𝜔)𝑅 

𝑑𝑅

𝑑𝑡
≥ −(𝜑 + 𝜔)𝑅 

𝑑𝑅

𝑅(𝑡)
≥ −(𝜑 + 𝜔)𝑑𝑡    (18) 
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∫
𝑑𝑅

𝑅(𝑡)
≥ −∫(𝜑 + 𝜔)𝑑𝑡 

𝐼𝑛𝑅(𝑡) ≥ −(𝜑 + 𝜔)𝑑𝑡 

𝑅(𝑡) ≥ 𝑅0ℓ
−(𝜑+𝜔)(𝑡 > 0   

At 𝑡 > 0,𝑅(𝑡) > 0 
𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − (𝜑 + 𝜂)𝑉 

𝑑𝑉

𝑑𝑡
≥ −(𝜑 + 𝜂)𝐼 

𝑑𝑉

𝑉(𝑡)
≥ −(𝜑 + 𝜂)𝑑𝑡    (19) 

∫
𝑑𝑉

𝑉(𝑡)
≥ −∫(𝜑 + 𝜂)𝑑𝑡 

𝐼𝑛𝑉(𝑡) ≥ −(𝜑 + 𝜂)𝑑𝑡 

𝑉(𝑡) ≥ 𝑉0ℓ
−(𝜑+𝜂)𝑡 > 0   

At 𝑡 > 0,𝑉(𝑡) > 0 

Equation (14) to (19) shows system (1) in the positive 

quadrant, persisting in the attracting subsetΓ, which is 

compact, positively invariant, and influential, with a well-

posed, epidemiologically and mathematically represented 

solution. 

Disease Free Equilibrium State 

The equilibrium state of non-infected individuals with 

measles signifies a system devoid of measles, encompassing 

individuals categorized as infected (I) and exposed (E)𝐼 =
𝐸 = 0. 

𝑁• = 𝑆• + 𝐸• + 𝐼• + 𝑇• + 𝑅• + 𝑉• = 0 (20) 

𝜇𝑁 − 𝛽
𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 = 0 

𝛽
𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸 = 0 

𝜎𝐸 − (𝛾1 + 𝛿 + 𝜃 + 𝜑)𝐼 = 0 

𝜌𝑆 + 𝛿𝐼 − (𝛾2 +𝜑)𝑇 = 0 

(𝛾1 + 𝜃)𝐼 + 𝛾2𝑇 − 𝜑𝑅 = 0 

𝛼𝑆 − 𝜑𝑉 = 0    

When measles is of no spread, the disease classes are 

subjected 𝐼 = 𝐸 = 0are considered at equilibrium where  

𝜇𝑁 − 𝛽
𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 = 0, 𝑆 =

𝜇

(𝛼+𝜌+𝜑)
, 

𝑇 =
𝜌𝜇

(𝛼+𝜌+𝜑)(𝛾2+𝜑)
,  

𝑅 =
𝜌𝜇𝛾2

𝜑(𝛼+𝜌+𝜑)(𝛾2+𝜑)
and 𝑉 =

𝛼𝜇

(𝛼+𝜌+𝜑)
 

Thus, the disease-free equilibrium yields: 

(𝑆0, 𝐸0, 𝐼0, 𝑇0, 𝑅, 𝑉0) =

(
𝜇

(𝛼+𝜌+𝜑)
, 0,0,

𝜌𝜇

(𝛼+𝜌+𝜑)(𝛾2+𝜑)
,

𝜌𝜇𝛾2

𝜑(𝛼+𝜌+𝜑)(𝛾2+𝜑)
,

𝛼𝜇

(𝛼+𝜌+𝜑)
) 

     (21) 

 

 

 

Steady State Prevalence 

It is crucial to highlight the dynamic nature of measles prevalence, especially its central role in sustaining outbreaks within a 

population. To analyze the system at equilibrium, consider the set of equations in (1), where the equilibrium points represent 

the endemic states of measles prevalence. Φ = (𝑆•, 𝐸•, 𝐼•, 𝑅•)and 𝑡 > 0 

𝛼𝑆 − 𝜑𝑉 = 0    

𝑆∗ =
𝛽𝜇𝛼𝜇+(𝛼+𝜌+𝜑)

𝛼2(𝛼+𝜌+𝜑)+(𝛼+𝜌+𝜑)
, 𝐸∗ =

𝛽2𝜇𝛼𝜇+(𝛼+𝜌+𝜑)

𝛼(𝜎+𝜑)(𝛼+𝜌+𝜑)2+(𝛼+𝜌+𝜑)
 

𝐼• =
𝛽2𝜎𝜇𝛼𝜇+(𝛼+𝜌+𝜑)

(𝛾1+𝛿+𝜃+𝜑)[𝛼(𝜎+𝜑)(𝛼+𝜌+𝜑)
2+(𝛼+𝜌+𝜑)]

       (22) 












++++++++

+++
+

+++++

+++

+
=

)]())(()[(

)(

)()(

)(

)(

1
2

1

2

2

2 








T  

𝑅∗ =
(𝛾2 + 𝜑)[𝛽𝜇𝛼𝜇 + (𝛼 + 𝜌 + 𝜑) + 𝛽

2𝜎𝜇𝛼𝜇 + (𝛼 + 𝜌 + 𝜑)

𝛼2[(𝛼 + 𝜌 + 𝜑) + (𝛼 + 𝜌 + 𝜃 + 𝜑) + (𝛾1 + 𝛿 + 𝜑)]
2[𝛼(𝜎 + 𝜑)(𝛼 + 𝜃 + 𝜌 + 𝜑)2 + (𝛼 + 𝜌 + 𝜑)]

 

𝑆∗ =
𝛽𝛼𝜇𝛼𝜇 + (𝛼 + 𝜌 + 𝜑)

𝛼2𝜑(𝛼 + 𝜌 + 𝜑) + (𝛼 + 𝜌 + 𝜑)
 

 

The Disease Threshold 𝑅0 

The basic reproduction number, denoted as𝑅0. To quantify the likelihood of new measles infections arising from a single 

infectious individual in a previously unexposed population, we apply the next-generation matrix approach to construct the 

system outlined in (1), with a focus on infectious compartments. In this method, the 𝐹and 𝑉 matrices are computed, 

representing the rate of new infections and the rate of transitions into and out of the infected compartment, respectively. This 

approach captures the dynamics of measles transmission and reinfection, emphasizing the importance of treatment as a critical 

control measure. These matrices are obtained using a complex derivation from the equations in System (1),𝑅0 = 𝜌(𝐺 − 𝜆𝐼) 
taking 𝐺 = 𝐹 × 𝑉−1and 𝜌is the spectral radius of the matrix |𝐺 − 𝜆𝐼|.From the system of equation (1) it is obtained for matrix  

𝐹and𝑉:

















=

j

ii
i

x

xf
F

)( 𝑉𝑖 = (
∂𝜈𝑖(𝑥𝑖)

∂𝑥𝑗
)        (23) 

and such that  

𝑓 = (
𝛽𝐼𝑆0

𝑁

0
) and𝑣 = (

(𝜎 + 𝜑)𝐸

−𝜎𝐸 + (𝛾1 + 𝜃 + 𝛿 + 𝜑)𝐼
)       (24) 

then, 

𝐹 = (
𝛽𝜇

(𝛼+𝜌+𝜑)

0
)𝑉 = (

(𝜎 + 𝜑) 0

𝜎 (𝛾1 + 𝜃 + 𝛿 + 𝜑)
)  

𝐹𝑉−1 =
1

(𝛼+𝜌+𝜑)(𝜎+𝜑)
(

𝛽𝜇

(𝛼+𝜌+𝜑)
0

0 0
) (
(𝜎 + 𝜑) 0

𝜎 (𝛾1 + 𝜃 + 𝛿 + 𝜑)
)  

𝑅0 =
𝛽𝜇(𝜎+𝜑)

𝜇(𝛼+𝜌+𝜑)(𝛾1+𝜃+𝛿+𝜑)(𝜎+𝜑)
         (25) 
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It results that the basic reproductive ratio determines the number of infected individual migrating to the subpopulation of 

exposed and infected, as this affect the level of recovery form the spread of measles. The leading eigenvalue of the non-

invariant is the basic reproduction number of the disease model 

 

Local Stability of the Disease-Free State  

We examined the local stability of the disease-free state for measles by analysing the minimal recurrence rate impact. When 

the recurrence rate𝑅* < 1, the disease declines, to determine stability using a Jacobian matrix and a characteristic equation. 

Lemma 1 

The disease-free state of the model is locally asymptotically stable𝑅* < 1, otherwise 𝑅* > 1if and only if the disease state 

prevails. 

Proof: 

The disease-free equilibrium obtained as the Jacobian matrix of the system of (1) is evaluated at the disease free State using 

the linearization thus; 

𝐽𝐸0 =

(

 
 
 
 
 

−
𝜇

(𝛼+𝜌+𝜑)
0 −

𝜇

(𝛼+𝜌+𝜑)
0 0 0

𝜇

(𝛼+𝜌+𝜑)
−(𝜎 + 𝜑) 0 0 0 0

0 𝜎 −(𝛾1 + 𝜃 + 𝛿 + 𝜑) 0 0 0
𝜌 0 𝛿 −(𝛾2 + 𝜑) 0 0
0 0 𝛾1 𝛾2 −𝜑 0
𝛼 0 0 0 0 −𝜑)

 
 
 
 
 

  

(

 
 
 
 
 

−
𝜇

(𝛼+𝜌+𝜑)
0 −

𝜇

(𝛼+𝜌+𝜑)
0 0 0

𝜇

(𝛼+𝜌+𝜑)
−(𝜎 + 𝜑) 0 0 0 0

0 𝜎 −(𝛾1 + 𝜃 + 𝛿 + 𝜑) 0 0 0
𝜌 0 𝛿 −(𝛾2 +𝜑) 0 0
0 0 𝛾1 𝛾2 −𝜑 0
𝛼 0 0 0 0 −𝜑)

 
 
 
 
 

− 𝜆

(

  
 

10 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1)

  
 

  

|

|

−
𝜇

(𝛼+𝜌+𝜑)
− 𝜆1 0 −

𝜇

(𝛼+𝜌+𝜑)
0 0 0

𝜇

(𝛼+𝜌+𝜑)
−(𝜎 + 𝜑) − 𝜆2 0 0 0 0

0 𝜎 −(𝛾1 + 𝜃 + 𝛿 + 𝜑) − 𝜆3 0 0 0

𝜌 0 𝛿 −(𝛾2 + 𝜑) − 𝜆4 0 0
0 0 𝛾1 𝛾2 −𝜑 − 𝜆5 0
𝛼 0 0 0 0 −𝜑 − 𝜆6

|

|

= 0  

Computing for the eigenvalues,|𝐽𝐸1 − 𝜆𝑖𝐼| = 0, from the Jacobian matrix the respective eigen values of the matrix can be 

obtained as; 

|
−𝜑 − 𝜆5 0

0 −𝜑 − 𝜆6
| = 0 𝜆5 = 𝜆6 = −𝜑  

(𝐴 − 𝜆1)(𝐵 − 𝜆2)(𝐶 − 𝜆3)(𝐷 − 𝜆4)(𝐸 − 𝜆5)(𝐴 − 𝜆6) = 0      (26) 

The negativity of the invariants region with respective eigen values obtained for the model equation is asymptotically stable. 

 

Local stability of endemic equilibrium point 

Lemma 2 

The regional resilience of the persistent equilibrium of the proposed model is locally asymptotically stable if and unstable 

otherwise if 𝑅∗ > 1 

Proof: 

Suppose,𝑆 = 𝑥 + 𝑆∗, 𝐸 = 𝑦 + 𝐸∗, 𝐼 = 𝑧 + 𝐼∗, 𝑇 = 𝑎 + 𝑇∗, 𝑅 = 𝑏 + 𝑅∗, 𝑉 = 𝑐 + 𝑉∗   (27)     

Linearizing equation (1), is then obtained as 

𝐽𝐸0 =

(

 
 
 
 
 

−
𝜇

(𝛼+𝜌+𝜑)
0 −

𝜇

(𝛼+𝜌+𝜑)
0 0 0

𝜇

(𝛼+𝜌+𝜑)
−(𝜎 + 𝜑) 0 0 0 0

0 𝜎 −(𝛾1 + 𝜃 + 𝛿 + 𝜑) 0 0 0
𝜌 0 𝛿 −(𝛾2 + 𝜑) 0 0
0 0 𝛾1 𝛾2 −𝜑 0
𝛼 0 0 0 0 −𝜑)

 
 
 
 
 

  

𝜇𝑁 − 𝛽
𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 = 0

 
𝑑𝑥

𝑑𝑡
= −𝛽𝑥𝑧(𝜌 + 𝛼 + 𝜑) − 𝜇𝑥 + higher order +  nonlinear terms...

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑧(𝑎 + 𝛼𝑐)−1 − (𝜇 + 𝜑 + 𝜌)𝑦 + higher order +  nonlinear terms...

𝑑𝑧

𝑑𝑡
= 𝜎𝑦 + (+𝜃 + 𝛾1 + 𝜑)𝑧 − 𝛾2𝑧 + 𝛿𝑎 + higher order +  nonlinear terms...

𝑑𝑎

𝑑𝑡
= 𝜌𝑧 + 𝛿𝑐 − (𝜌 + 𝛿 + 𝜑)𝑎 + higher order +  nonlinear terms...

𝑑𝑏

𝑑𝑡
= (𝛾2 + 𝜑+)𝑎 + 𝜌𝑏 + higher order +  nonlinear terms...

𝑑𝑐

𝑑𝑡
= 𝛼𝑧 − 𝜑𝑐 + higher order +  nonlinear terms... }

 
 
 
 

 
 
 
 

   (28) 

Jacobian matrix of the system of  
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||

−(2𝛽(1 + 𝛼)−1 + 𝜑) 0 (2𝛽(1 + 𝛼)−1 + 𝜑) 0

(2𝛽(1 + 𝛼)−1 + 𝜑) −(𝛿 + 𝛾1 +𝜑) 2𝛽(1 + 𝛼)−1 + (𝛿 + 𝛾 + 𝜑) 0
0 𝛿 −(𝛿 + 𝛾2 + 𝜑) 0
0 0 (𝜑 + 𝜌 + 𝛿) −(𝜌 + 𝛿 + 𝜑)

|| = 0  

The resulting eigenvalue of the above matrix is obtained as;
 (−(2𝛽(1 + 𝛼)−1 + 𝜑) − 𝜆1)(−(𝛿 + 𝛾1 + 𝜑) − 𝜆2)(−(𝜌 + 𝛾2 + 𝜑) − 𝜆3)(−(𝛿 + 𝜑) − 𝜆4)(−(2𝛽(𝛿 + 𝛼)

−1 + 𝜑) − 𝜆5) 
(−(2𝛽(𝜌 + 𝛼)−1 + 𝜑) − 𝜆6) = 0 (35) 

If 𝑎 = −(2𝛽(1 + 𝛼)−1, 𝑏 = −(𝜀 + 𝜇), 𝑐 = −(𝑇 + 𝛾 + 𝜇), 𝑑 = −(𝛿 + 𝜇)    (29) 

It is therefore obtained that 

(𝑎 − 𝜆1)(𝑏 − 𝜆2)(𝑐 − 𝜆3)(𝑑 − 𝜆4)(𝑒 − 𝜆5)(𝑓 − 𝜆6) = 0 

𝜆6 − [(𝑎 + 𝑏 + 𝑑)(𝑐 + 𝑓 + 𝑓) + 𝑎𝑏 + 𝑐𝑑] + 𝜆5[(𝑎 + 𝑒)(𝑏 + 𝑑) + 𝑒𝑓 + 𝑐𝑑] − [𝑎𝑏𝑑(𝑐 + 𝑏) + 𝑎𝑒(𝑐 + 𝑒)]𝜆3 
[𝑏𝑒𝑓(𝑎 + 𝑏) + 𝑏𝑐(𝑎 + 𝑏 + 𝑑)]𝜆3 + [𝑎𝑒 + 𝑎𝑑 + 𝑏𝑑 + 𝑎𝑐]𝜆2 + [(𝑒 + 𝑎) + (𝑏 + 𝑐)]𝜆 + 𝑎𝑏𝑐𝑑𝑒𝑓 = 0  

Therefore, the persistent resilience of the respective Eigen values in the model invariance region of ℜ4
+ is asymptotically stable.

 
 

Global Stability of Disease Free Equilibrium 

Employing Lyapunov function approach, we establish the global asymptotic stability of the proposed model for equation (1) 

at the disease-free equilibrium, utilizing the Lyapunov algorithm. 

Ψ(𝑡, 𝑆, 𝐸, 𝐼, 𝑇, 𝑅, 𝑉) = 𝐶1𝐼1 + 𝐶2𝐼2 

(𝑆0, 𝐸0, 𝐼0, 𝑇0, 𝑅, 𝑉0) = (
𝜇

(𝛼+𝜌+𝜑)
, 0,0,

𝜌𝜇

(𝛼+𝜌+𝜑)(𝛾2+𝜑)
,

𝜌𝜇𝛾2

𝜑(𝛼+𝜌+𝜑)(𝛾2+𝜑)
,

𝛼𝜇

(𝛼+𝜌+𝜑)
) (30) 

𝑑Ψ

𝑑𝑡
= 𝐶1𝐼1

• + 𝐶2𝐼2
• = 𝐶1 (

𝛽𝛼

(𝛼+𝜌+𝜑)
− (𝜇 + 𝛿 + 𝜑)𝐼1) + 𝐶2(𝜎𝐼1 − (𝜇 + 𝛾1 + 𝜑)]𝐼2)  

𝑑Ψ

𝑑𝑡
≤ (𝐶2𝜎 − 𝐶1(𝜇 + 𝛿 + 𝜑))𝐼1 − (𝐶1

𝛽𝛼

(𝛼+𝜌+𝜑)
− 𝐶2(𝜇 + 𝛾 + 𝜑)) 𝐼2  

𝑑Ψ

𝑑𝑡
≤ 𝐶1(𝐶2𝜎 − 𝐶1(𝜇 + 𝜑 + 𝛾1))𝐼1 − (𝐶2

𝛽𝛼

(𝛼+𝜌+𝜑)
− 𝐶2(𝜇 + 𝛾 + 𝜑)) 𝐼2  

𝐶1 =
1

(𝛼+𝜑+𝛾1)
, 𝐶2 =

𝛽𝛼𝜑

𝜇(𝛿+𝜑+𝛾1)(𝛼+𝜑+𝛾2)(𝛼+𝜑+𝛾1)
, 𝑅 ≤ 0  

𝑑Ψ

𝑑𝑡
≤ 𝐶1 (

𝛽𝜇(𝜎 + 𝜑)

𝜇(𝛼 + 𝜌 + 𝜑)(𝛾1 + 𝛿 + 𝜑)(𝜎 + 𝜑)
−
(𝛼 + 𝜑 + 𝛾1)

(𝛼 + 𝜑 + 𝛾1)
) 𝐼1 

−(
𝛽𝛼𝜑

𝜇(𝛿 + 𝜑 + 𝛾1)(𝛼 + 𝜑 + 𝛾2)(𝛼 + 𝜑 + 𝛾1)
−

𝛽𝛼𝜑

𝜇(𝛿 + 𝜑 + 𝛾1)(𝛼 + 𝜑 + 𝛾2)(𝛼 + 𝜑 + 𝛾1)
) 𝐼2 

𝑑Ψ

𝑑𝑡
≤ (

𝛽𝜇(𝜎 + 𝜑)

𝜇(𝛼 + 𝜌 + 𝜑)(𝛾1 + 𝛿 + 𝜑)(𝜎 + 𝜑)
− 1) 𝐼 

𝑑Ψ

𝑑𝑡
≤ (𝑅0 − 1)          (31) 

It is pertinent that when at ,→t 𝑑𝜓

𝑑𝑡
≤ 0. Substituting into the model system of equation (1) reveals that, based on LaSalle’s 

invariance principle
𝑑𝜓

𝑑𝑡
= 0, is globally asymptotically stable whenever 𝑅0 > 1 

 

Global stability for endemic equilibrium 

Theorem 3 

The Dulac criterion provides a technique in dynamical systems for proving the non-resistance of periodic orbits within a 

specified region of the phase plane. In the context of a mathematical model of measles, this criterion can be extended to 

examine the global stability of an equilibrium point, confirming that recurrent measles outbreaks cannot persist under the given 

model conditions. 

Proof: 

For a dynamical system described by the differential equations: 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦) 𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦)         (32) 

The Dulac criterion states that if there exists a continuously differentiable function 𝐵(𝑥, 𝑦) (called the Dulac function) such 

that the expression: 
∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑓(𝑥, 𝑦)) +

∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑔(𝑥, 𝑦))       (33) 

is either strictly positive or strictly negative throughout a simply connected region𝐷 of the phase plane, then there are no closed 

trajectories (periodic orbits) contained entirely within 𝐷. 

To apply this to determine the global stability of an endemic equilibrium (𝑥*, 𝑦*)of a mathematical model, the endemic 

equilibrium point(𝑥*, 𝑦*). Also define the Dulac function 𝐵(𝑥, 𝑦)and the expression 
∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑓(𝑥, 𝑦)) +

∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑔(𝑥, 𝑦)) as 𝐵(𝑥, 𝑦)𝑔(𝑥, 𝑦)        (34) 

This shows that this expression is of one sign (either strictly positive or strictly negative) in the region of interest. If such a 

Dulac function 𝐵(𝑥, 𝑦) can be found, the system has no periodic orbits in that region, suggesting the global stability of the 

endemic equilibrium if no other attractors exist. Hence, if ∃𝐵(𝑥, 𝑦) ∈ 𝐶1such that 
∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑓(𝑥, 𝑦)) +

∂

∂𝑥
(𝐵(𝑥, 𝑦)𝑔(𝑥, 𝑦)) ≠ 0in𝐷. Then there are no closed trajectories in 𝐷.This criterion is useful in proving the global stability 

of the endemic equilibrium when combined with other stability analysis techniques. 

We employ this concept of Dulac’s criterion. Let 𝑋 = (𝑆, 𝐸, 𝐼, 𝑇, 𝑅, 𝑉)define the Dulac’s function 

𝐺 =
1

𝑆𝐼
. The following system of equation are obtained; 
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𝐺
𝑑𝑆

𝑑𝑡
=

1

𝑆𝐼
{𝜇𝑁 − 𝛽

𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆}  

𝐺
𝑑𝐸

𝑑𝑡
=

1

𝑆𝐼
{𝛽

𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸}  

𝐺
𝑑𝐼

𝑑𝑡
=

1

𝑆𝐼
{𝜎𝐸 − (𝛾1 + 𝛿 + 𝜑)𝐼}        (35) 

𝐺
𝑑𝑇

𝑑𝑡
=
1

𝑆𝐼
{𝜌𝑆 + 𝛿𝐼 − (𝛾2 + 𝜑)𝑇} 

𝐺
𝑑𝑅

𝑑𝑡
=
1

𝑆𝐼
{𝛾1𝐼 + 𝛾2𝑇 − 𝜑 + 𝜔𝑅} 

𝐺
𝑑𝑉

𝑑𝑡
=
1

𝑆𝐼
{𝛼𝑆 − 𝜑 + 𝜂𝑉} 

The above system of equations results to;  

𝐺
𝑑𝑆

𝑑𝑡
= {

𝜇𝑁

𝑆𝐼
−
𝛽𝐼

𝐼
−
(𝛼+𝜌+𝜑)

𝐼
}c 

𝐺
𝑑𝐸

𝑑𝑡
= {

𝛽

𝑁
−
𝛽(𝜎+𝜑)𝐸

𝑆𝐼
}  

𝐺
𝑑𝐼

𝑑𝑡
= {

𝜎𝐸

𝑆𝐼
−
𝜎𝐸(𝛾1+𝛿+𝜑)

𝑆
}  

𝐺
𝑑𝑇

𝑑𝑡
= {

𝜌

𝐼
+
𝛿

𝑆
−
(𝛾2+𝜑)

𝑆𝐼
}  

𝐺
𝑑𝑅

𝑑𝑡
=

1

𝑆𝐼
{
𝛾1

𝑆
+
𝛾2𝑇

𝑆
−
𝜑𝑅

𝑆
}  

𝐺
𝑑𝑉

𝑑𝑡
= {

𝛼

𝐼
−
𝜑+𝜂𝑉

𝑆𝐼
}  

At 𝑡 > 0 orbital resolution of the system of equations is given by 
𝑑(𝐺𝑋)

𝑑𝑡
 as obtained below.  

𝑑(𝐺𝑋)

𝑑𝑡
=

∂

∂𝑆
{𝐺

𝑑𝑆

𝑑𝑡
} +

∂

∂𝐸
{𝐺

𝑑𝐸

𝑑𝑡
} +

∂

∂𝐼
{𝐺

𝑑𝐼

𝑑𝑡
} +

∂

∂𝑅
{𝐺

𝑑𝑅

𝑑𝑡
}  

𝑑(𝐺𝑋)

𝑑𝑡
=

∂

∂𝑆
{
Λ

𝑆𝐼
−

𝛽

(𝜑+𝛼+𝛿)
−
𝜇

𝐼
} +

∂

∂𝐸
{

𝛽

(𝜑+𝜃+𝛼+𝛾1)
−
(𝜇+𝜀)𝐸

𝑆𝐼
} +

∂

∂𝐼
{
𝜀𝐸

𝑆𝐼
−
(𝜑+𝛼+𝛾2)

𝑆
+
𝛿𝑅

𝑆𝐼
} +

∂

∂𝑇
{
𝑇

𝑆𝐼
+
𝛾

𝑆
−
(𝜇+𝛿)𝑅

𝑆𝐼
} +

∂

∂𝑅
{
𝑇

𝑆𝐼
+
𝛾

𝑆
−

(𝜎+𝜑+𝛿)𝑅

𝑆𝐼
} +

∂

∂𝑉
{+

𝜑

𝑆
−
(𝜇+𝜑)𝑅

𝑆𝐼
}  







 +

−+



+







 ++

−+



+







 +

−+



+









+
++

−



+







 +

−
+++


+









−
++

−





=

SI

R

SVSI

R

SSI

T

RSI

R

SSI

T

T

SI

R

SSI

E

ISI

E

EISISdt

GXd

)()()(

)()(

)()(

)( 2

1












 

𝑑(𝐺𝑋)

𝑑𝑡
= −{

[(𝛽+𝛼+𝛿)+𝛽+𝜑(𝛾1+𝛼+𝜑)]

(𝛿+𝜑+𝛼)
+
[𝛽+(𝜇+𝜀)]

𝑆(𝜑+𝛼)

+
[(𝛾1+𝜃+𝛿+𝜑)]

𝑆𝐼
+
[(𝛾2+𝛼+𝜑)]

𝑆𝐼

}       (36) 

𝑑(𝐺𝑋)

𝑑𝑡
= −{

𝛽(𝛽 + 𝛼 + 𝛿) + 𝛽 + 𝜑(𝛾2 + 𝛼 + 𝜑) + [(𝛾1 + 𝜃 + 𝛼 + 𝛿) + 𝛽 + 𝜑(𝛾2 + 𝛼 + 𝜑)]

𝑆𝐼
} < 0 

This result indicates that the system lacks closed orbits, meaning there are no periodic fluctuations in the number of infected 

individuals. Epidemiologically, this suggests that sustained oscillations in measles cases do not occur, underscoring the 

importance of treatment as a primary control strategy. By focusing on measles treatment, resource allocation can be optimized 

to effectively reduce and eventually halt the rapid spread of the disease with time. 

 

Sensitivity Analysis of 𝑅0 

The primary aim is to assess the sensitivity of the basic reproduction number, by computing its derivative concerning all 

relevant parameters. This analysis will result in the determination of the normalized forward sensitivity index, denoted as 
𝑅0 =

𝛽𝜇(𝜎+𝜑)

𝜇(𝛼+𝜌+𝜑)(𝛾1+𝛿+𝜑)(𝜎+𝜑)
  

01206000.0
0

00 =



=





R

RR 



∂𝑅0

∂𝜇
=

∂𝑅0

∂𝜇
×

𝜇

𝑅0
= 0.00130200 

03267370.1
0

00 =



=





R

RR 



∂𝑅0

∂𝜎
=

∂𝑅0

∂𝜎
×

𝜎

𝑅0
= 0.00130      (37) 

1874342.0
0

1

1

0

1

0 =



=





R

RR 



∂𝑅0

∂𝜑
=

∂𝑅0

∂𝜑
×

𝜑

𝑅0
= 0.15356728 

1227361.0
0

2

2

0

2

0 =



=





R

RR 



∂𝑅0

∂𝑁
=

∂𝑅0

∂𝑁
×

𝑁

𝑅0
= 1.00000000 

∂𝑅0
∂𝛿

=
∂𝑅0
∂𝛿

×
𝛿

𝑅0
= 0.00000040 
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Table 3: Sensitivity Analysis and Parameter Indices 

Parameters Sensitivity indices 

𝛽 0.07362 

𝜇 1.28373 

𝛼 0.03421 

𝛾2 0.00125 

𝛿 1.10932 

𝛾1 1.90243 

𝜎 0.59824 

𝜑 0.19232 

 

Table 3 shows that the sensitivity indices of are positively 

invariant in ℜ5
+ the sensitivity indices depend on the values of 

the each parameters of𝑅0, and this brings about changes in the 

values that will affect the behaviour of the threshold on the 

spread or vanity of measles disease. Based on the table, we 

can conclude that parameters are the most sensitive to the 

basic reproduction number in equation (18) of the measles 

model. Particularly, increasing the value of 𝜎 will result in a 

96.96% increase in𝑅*, while increasing the value of 𝑘will lead 

to a 91.52% decrease in 𝑅0.  

 

Numerical Simulation  

Homotopy Perturbation Method (HPM) is an elegant and 

powerful method to solve linear and non-linear partial 

differential equations. As we know to get an exact solution of 

non- linear partial differential equation is very difficult, so any 

kind of perturbative approach is acceptable depending on its 

criteria. HPM provides an analytical solution by using the 

initial conditions. It is interesting to note that only a few terms 

are required to obtain a most accurate approximate solution. 

This section, we have illustrated the basic idea of homotopy 

perturbation method to apply in non-linear equations. 

Consider the following non-linear differential equation of the 

form. 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω   (38) 

Subject to the boundary conditions: 

𝐵 = (𝑢,
∂𝑢

∂𝑛
) = 0, 𝑟 ∈ Γ,   (39)

 
Where A is a general differential operator, B is a boundary 

operator, f(r) a known analytical function and Γis the 

boundary of the domainΩ. In general, one can divide the 

operation A into two parts: Linear and non-linear. That means  

𝐴 = 𝐿 + 𝑁 
 

Where L is Linear and N is the non-linear,  

Hence, equation (3) can now be rewritten as  

𝐿(𝑢) + 𝑁(𝑢) + 𝑓(𝑟) = 0, 𝑟 ∈ Ω  (40)
 

By the homotopy technique, one can construct a homotopy in 

the following way 

𝑣(𝑟, 𝑝):Ω × [0,1] → 𝑅
 This satisfies 

𝐻(𝑉, 𝑃) = (1 − 𝑃)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑃[𝐴(𝑣) − 𝑓(𝑟) =
0, 𝑃 ∈ [0,1], 𝑟 ∈ Ω    (41)

 
Constructing a homotopy perturbation method using an 

algorithm developed on each compartment of the model. We 

conduct the numerical simulation on the mathematical model 

using the concept of homotopy perturbation method which 

brings about creating the following correctional scheme for 

the model equation. 

The differential equation of the model formulation on the use 

of homotopy perturbation method technique is illustrated as; 

(1 − 𝑝)
𝑑𝑆

𝑑𝑡
+ 𝑝 (

𝑑𝑆

𝑑𝑡
− [𝜇𝑁 − 𝛽

𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆]) = 0  

(1 − 𝑝)
𝑑𝐸

𝑑𝑡
+ 𝑝 (

𝑑𝐸

𝑑𝑡
− [

𝛽𝑆𝐼

1+𝛼𝐼
− 𝛽

𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸]) = 0  

(1 − 𝑝)
𝑑𝐼

𝑑𝑡
+ 𝑝 (

𝑑𝐼

𝑑𝑡
− [𝜀𝐸 − (𝛾1 + 𝛿 + 𝜑)𝐼]) (42) 

(1 − 𝑝)
𝑑𝑅

𝑑𝑡
+ 𝑝 (

𝑑𝑅

𝑑𝑡
− [𝜌𝑆 + 𝛿𝐼 − (𝛾2 +𝜑)𝑇]) = 0  

(1 − 𝑝)
𝑑𝑅

𝑑𝑡
+ 𝑝 (

𝑑𝑅

𝑑𝑡
− [𝛾1𝐼 + 𝛾2𝑇 − 𝜑 + 𝜔𝑅]) = 0  

(1 − 𝑝)
𝑑𝑅

𝑑𝑡
+ 𝑝 (

𝑑𝑅

𝑑𝑡
− [𝛼𝑆 − 𝜑 + 𝜂𝑉]) = 0  

The following correctional series are assumed as solutions for 

(1) such that 

𝑆(𝑡) = ∑ 𝑝𝑘𝑠𝑘(𝑡),
𝑛
𝑘=0 𝐸(𝑡) = ∑ 𝑝𝑘𝑒𝑘(𝑡),

𝑛
𝑘=0 𝐼(𝑡) =

∑ 𝑝𝑘𝑖𝑘(𝑡),
𝑛
𝑘=0 𝑇(𝑡) = ∑ 𝑝𝑘𝑡𝑘(𝑡)

𝑛
𝑘=0 , 𝑅(𝑡) =

∑ 𝑝𝑘𝑟𝑘(𝑡), 𝑉(𝑡) = ∑ 𝑝𝑘𝑣𝑘(𝑡)
𝑛
𝑘=0

𝑛
𝑘=0   

This series converges as p tends to in each of the iterations is 

subjected to the initial conditions as𝑡 → 1. Evaluating (32) 

and comparing coefficients of 𝑝𝑛 yields the following at 𝑛 =
1 
𝑑𝑆

𝑑𝑡
= 0,

𝑑𝐸𝑜

𝑑𝑡
= 0,

𝑑𝐼𝑜

𝑑𝑡
= 0,

𝑑𝑉𝑜

𝑑𝑡
= 0,

𝑑𝑅𝑜

𝑑𝑡
= 0,

𝑑𝑉𝑜

𝑑𝑡
= 0 

     (43) 

Solving these equations using the initial constraints 

𝜇𝑁 − 𝛽
𝐼

𝑁
𝑆 − (𝛼 + 𝜌 + 𝜑)𝑆 = 0  

𝛽
𝐼

𝑁
𝑆 − (𝜎 + 𝜑)𝐸 = 0   

𝜎𝐸 − (𝛾1 + 𝛿 + 𝜑)𝐼 = 0  

𝜌𝑆 + 𝛿𝐼 − (𝛾2 +𝜑)𝑇 = 0  

𝛾1𝐼 + 𝛾2𝑇 − (𝜑 + 𝜔)𝑅 = 0  

𝛼𝑆 − (𝜑 + 𝜂)𝑉 = 0   

𝑆0(𝑡) = 𝑠0, 𝐸0(𝑡) = 𝑒0, 𝐼0(𝑡) = 𝑖0, 𝑅0(𝑡) = 𝑟0, at this initial 

condition, the result obtained from (32) is deduced as 

𝑠(𝑡) = (𝜇𝑁 − 𝛽𝑠0𝑒0 − (𝛼 + 𝜌 + 𝜑) + 𝑠0)𝑡  

𝑒1(𝑡) = (𝛽𝛼𝑠0𝑖0 − (𝜎 + 𝜑)𝛼𝑠0𝑖0 − 𝜇𝑒0 + 𝜀𝑒0)𝑡  
𝑖1(𝑡) = (𝜎𝑒0 − (𝛾1 + 𝛿 + 𝜑)𝜎𝑒0 − 𝜇𝑖0 − 𝛿𝑖0 − 𝜌𝑖0)𝑡 
     (44) 

𝑡1(𝑡) = (𝛼𝑒0𝑖0 − 𝜇𝑟0 − 𝛽𝑖0 + 𝜀𝑒0)𝑡  

𝑟1(𝑡) = (𝛾1 + 𝛾2𝛼𝑒 − 𝜑𝛼𝑒0𝑖0 − 𝜇𝑟0 − 𝛽𝑖0 + 𝜀𝑒0)𝑡  

𝑣1(𝑡) = (𝛼 − 𝜑𝛼𝑒0𝑖0 − 𝜇𝑟0 − 𝛽𝑖0 + 𝜀𝑒0)𝑡  

The successive iterations of the results obtained at 𝑛 = 2, 

𝑠2(𝑡) =  
1

2
𝑡2 (

𝛼3𝑖20𝑠0 + 𝛼
2𝜇𝑖0𝑠0 + 𝛼

2𝛽𝑖0𝑠0 − 𝛼
2𝛽𝑖0𝑒0 − 𝛼

2
0 + 𝛼𝛿𝑖0𝑠0 + 2𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇

2𝑠0

+2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑟0 − 𝛽1
2𝑠0 − 𝛽𝑣0 − 𝛽

2𝑣0 − 𝜇𝜃 − 𝜀𝛽1
) 

𝑒2(𝑡)

= −
1

2
𝑡2 (

𝛼2𝑖0
2𝑠0 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝑟0𝑠0 − 𝛼𝑖𝑒0𝑠0 + 𝛼𝑒10𝑠0 + 𝛼𝛽𝑖0𝑠0

−𝛼𝛽𝑖0𝑠0 − 𝛼𝑖0 − 𝜇
2𝑒0 − 2𝜇𝑒0 − 𝛾

2𝑒0
) 

𝐼2(𝑡) = −
1

2
𝑡2(𝛼𝛽𝑖0𝑠0 − 𝜇

2𝑇0 + 2𝜇𝑇𝑠0 − 2𝜇𝛽𝑣0 + 𝛽
2𝑠0 +

𝛽𝑠0 − 𝛽
2𝑣0 − 𝜇𝛽)  

𝑡2(𝑡) = −
1

2
𝑡2(𝛿𝜌𝑖0 − 𝜇

2𝑟0 + 2𝜇𝜀𝑖0 + 𝛾
2𝑖0 − 𝜇𝜀𝑒0)  

𝑟2(𝑡) = −
1

2
𝑡2(𝛿𝜌𝑖0 − 𝜇

2𝑟0 + 2𝜇𝜀𝑖0 + 𝛾
2𝑖0 − 𝜇𝜀𝑒0)  (45) 

𝑣2(𝑡) = −
1

3
𝑡2(𝜑𝜌𝑖0 − 𝜇

2𝑒0 − 𝜇𝜀𝑒0 + 2𝛾2𝛾1𝑒0𝑟0 −

𝛿𝜎𝜀𝑒0 + 𝛾1𝛽𝜇)  

 

 

 

 

 



THE IMPACT OF MULTIFACETED…      Kolawole and Akin-Awoniran    FJS 

 FUDMA Journal of Sciences (FJS) Vol. 9 No. 11, November, 2025, pp 196– 208 204 204 

Subsequently, further iterations is carried out from the result of (52) at n = 3 results; 
𝑆3𝑐(𝑡) =

−
1

6
𝑡3

(

 
 
 

𝜇3𝑠0 + +2𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑠0 + 𝛽
2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽𝑣0 − 𝛽2

2𝑣0𝛼
2𝜇𝑖0𝑠0 + 𝛼

2𝛽1𝑖0𝑠0 − 𝛼
2𝛽2𝑖0𝑣0 − 𝛼

2𝜃𝑖0 + 𝛿𝑖0𝑠0 +

2𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 + 5𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2

2𝑣0 − 𝜇𝜃 − 𝜃𝛽1 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇
2𝑠0 + 3𝜇𝛽1𝑠0

−2𝜇𝛽1𝑣0 − 𝛽1
2𝑠0 + 4𝛽2𝛽1𝑠0 + +2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 − 5𝛽2𝛽1𝑣0 − 3𝛽2
2𝑣0 − 𝛼𝑖0𝑠0 − 𝜇𝑠0 − 3𝛽1𝑠0 + 2𝛽2𝑣0 + 𝜃 − 𝜇𝜃 − 𝜃𝛽

&1 − 2𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜇𝜃 − 𝜃𝛽 − 5𝛽1𝑠0 − 𝛽2𝑣0 + 𝜇𝑣0 − 3𝜇𝛽1𝑠0 − 2𝜇𝛽2𝑣0 + 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0_ + 𝛿
2𝑖0 + 2𝛿𝜇𝑖0 + 2𝛿𝜌𝑖0 − 𝛿𝜎𝑒0 + 𝜇

2𝑖0
+2𝜇𝜌𝑖01 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 3𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 − 𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼0𝑠0 + 𝛼10𝑠0 )

 
 
 

  

𝑒3(𝑡)

= −
1

6
𝑡2

(

 
 

𝛼2𝑖0
2𝑠0 + 𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 + 2𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣0 − 𝛽1

2𝑠0 + 5𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜇𝜃

−𝛼𝛽2𝑖0𝑣0 − 3𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝜇
2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌

2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + +𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0

−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 − 𝛼𝛽2𝑖0𝑣0 − 𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝛿𝜌𝑖0 − 𝜇
2𝑟0 − 3𝜇𝛽1𝑠0 + 𝛽1

2𝑠0 + 𝛽2𝛽1𝑠0 − 𝛽2𝛽1𝑣0 − 𝛽2
2𝑣0 − 𝜃𝛽1

++ 𝛼𝛿𝑖0𝑠0𝜎𝑒0 − 𝜇𝑖0 − 𝛿𝑖0 − 𝜌𝑖0 + 2𝜇𝜌𝑖0 − 2𝜇𝜎𝑒0 + 𝜌
2𝑖0 − 𝜌𝜎𝑒0 − 𝜎

2𝑒0 )

 
 

 

𝐼(𝑡)

= −
1

6
𝑡2

(

 
 

𝛼𝜎𝑖0𝑠0 + 𝛿
2𝑖0 + 2𝛿𝜇𝑖0 + 2𝛿𝜌𝑖0 − 𝛿𝜎𝑒0 + 𝜇

2𝑖0 + 2𝜇𝜌𝑖0 − 2𝜇𝜎𝑒0 + −𝜇
2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌

2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠

+𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝜌
2𝑖0 +−𝛽2

2𝑣0 − 𝜇𝜃 − 𝜃𝛽1 − 𝛼𝜎𝑒0𝑠0 + 𝛼𝛽10𝑠0 + 𝜇
2𝑠0 + 3𝜇𝛽1𝑠0 − 2𝜇𝛽1𝑣 − 𝜌𝜎𝑒0 − 𝜎

2𝑒0

+2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + +𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0

−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 − 𝛼𝛽2𝑖0𝑣0 − 𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎𝑒0 − 𝜎

2𝑒0 − 𝛿𝜌𝑖0 )

 
 

 

𝑡3(𝑡) = −
1

6
𝑡2 (

𝜑𝛽1𝑖0𝑠0 − 𝛼𝛽2𝑖0𝑣0 − 𝛼𝜃𝑖0 − 𝜇
2𝑒0 − 2𝜇𝜎 − 𝜑𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠0 + 2𝜇𝛽1𝑠0 − 𝛼𝜎𝑒0𝑠0

+𝛼𝜎10𝑠0 + 𝑒0 − 𝜎
2𝑒0 − 𝛿𝜌𝑖0 − 𝜇

2𝑟0𝛼𝛿𝑖0𝑠0𝜎𝑒0 − 𝜇𝑖0 − 𝜌𝜎𝑒0 − 𝜎
2𝑒0

) 

𝑟2(𝑡)

= −
1

6
𝑡2 (

𝛿𝜌𝑖0 − 𝜇
2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌

2𝑖0 + −𝜎
2𝑒0 − 𝜇

2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + +𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0

−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠 − 𝜌𝜎
2𝑒0

) 

𝑣2(𝑡)

= −
2

3
𝑡2 (

𝛿𝜌𝑖0 − 𝜇
2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌

2𝑖0 + −𝜎
2𝑒0 − 𝜇

2𝑟0 + 2𝜇𝜌𝑖0 + 𝜌
2𝑖0 + 𝛼𝛽1𝑖0𝑠0 − 4𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0 − 2𝛼𝜎𝑒0𝑠 + +𝛼𝛿𝑖0𝑠0 + 3𝛼𝜇𝑖0𝑠0 + 𝛼𝜌0𝑠0

−𝛼𝜎𝑒0𝑠0 + 𝛼𝜎10𝑠0 + 𝛼𝛽1𝑖0𝑠 − 𝜌𝜎
2𝑒0

) 

This can be furthered till the desired number of iterations are obtained. Hence, the summary of iterative solutions to each model 

compartment is obtained as; 

𝑆(𝑡) = ∑ 𝑠𝑘(𝑡)
3
𝑘=0 , , 𝐸(𝑡) = ∑ 𝑒𝑘(𝑡)

3
𝑘=0 , 𝐼(𝑡) = ∑ 𝑖𝑘(𝑡)

3
𝑘=0 , 𝑇(𝑡) = ∑ 𝑡𝑘(𝑡)

3
𝑘=0 , 𝑅(𝑡) = ∑ 𝑟𝑘(𝑡)

3
𝑘=0 , 𝑉(𝑡) = ∑ 𝑣𝑘(𝑡)

3
𝑘=0 ,

  

And evaluating these results using the corresponding model parameters of each class given by  
𝛼 = 0.008, 𝛿 = 0.4, 𝜇 = 1.0, 𝑇 = 0.1,Λ = 2.19, 𝛾 = 1.263, 𝛽 = 0.002, 𝜀 = 0.03,
𝑒0 = 653930, 𝑠 = 500000, 𝑖0 = 23890, 𝑟0 = 14730

}   (46) 

It is therefore obtained that, the initial values of the model parameters results is defined by equation below; 

𝑆(𝑡) = 2700 − 103.84𝑡 + 0.82753𝑡2 − 0.00182736365𝑡3  

𝐸(𝑡) = 81.2 + 773.12𝑡 − 127.27363𝑡2 + 0.8290276352𝑡3     (47) 

𝐼(𝑡) = 16.7 − 0.0329𝑡 + 0.081522𝑡2 − 0.187263672365𝑡3   

𝑇(𝑡) = 16.7 − 0.0329𝑡 + 0.081522𝑡2 − 0.187263672365𝑡3  

𝑅(𝑡) = 11.2 − 0.02383𝑡 − 0.111827362𝑡2 + 1.282735836139𝑡3  

𝑉(𝑡) = 142 − 0.8635𝑡 − 0.87379𝑡2 − 1.202372𝑡3 
 

The approximate results of each class are evaluated using their respective baseline values in obtained from table 3. We also 

suggest the following population data set as initial values given by  

𝑠0 = 1327363, 𝑒0 = 1923732, 𝑖0 = 1112837, 𝑡0 = 136833, 𝑟0 = 2182733, 𝑣0 = 717931. Thus we obtain the following 

series of results embedding the parameters whose influence on the dynamics of measles transmission are to be analysed as; 

𝑆(𝑡) = 1000 + (
123.8273 + 1.9273𝜀
−1.8363𝜀2 − 27.1𝛾

) 𝑡 + (

−71625. 𝑇2

+29.8635𝜇4

9272.86837
+8126.916𝛼2𝛾

)
𝑡2

3
−

(

 
 

0.66212𝑐2 − 1.82732𝛼3

−0.827252𝛿2 + 1.28263𝛼4

+18273.9273𝛼2 + 817.282535
−625422.753𝛼 − 1.29233209
+5243.91𝜇6 − 11.82636𝛾 )

 
 𝑡3

5
 
 

𝐸(𝑡) = 30 + (
−23.3723648𝑡
+0.003823646𝛼2

−12.8724643𝛼
) 𝑡 −

(

 
 

−69.3086134𝛾
−0.181786136𝜀
+0.0938287𝛼2

+0.0000493608𝑐
−5.292993669𝛼 )

 
 𝑡2

2
+

(

 
 

11.30828286𝛼2 − 80.26339203𝛼3

−9.8173𝛼 + 0.31334𝛼4𝑐
−1.891383𝛼3𝑐 + 182.926𝛼2

+0.0.1753𝑐 − 16.8625𝛼
+1.23232𝛼6 − 0.9021𝛼5 )

 
 𝑡3

7
  

𝐼(𝑡) = 28 − 0.22133𝑡 − (
127.0391180
+0.63524𝜀2

−0.7283𝛾
)
𝑡2

2
− (

−0.004499284709𝜀3 + 320.2194878
−0.138363𝛼 + 4.407401276𝑇2

+2.46825 ⋅ 10−8𝛽 − 0.004339725𝛽
)
𝑡3

3
  

𝑇(𝑡) = 2763 − 0.98327𝑡 − (
1379.81616
+0.2634𝜑2

−0.7283𝛾2

)
𝑡2

3
− (

−0.0089379𝜀3 + 320.2194878
−0.138363𝛼 + 4.82726𝑇2

+2. .27623 ⋅ 10−8𝛽 − 0.092626𝛽
)
𝑡3

3
  

𝑅(𝑡) = 40 + (46.18360 + 37.68𝑐)𝑡 − (
1817.52313
+45.9850488𝑇
−2044.386000𝛽2

)
𝑡2

3
+ (

13.49785413𝛼3 − 8249.759899𝛼4

+262457 + 0.7236752367325𝜇

+9.76026132237𝛽3
)
𝑡3

6
  

𝑉(𝑡) = 28 − 0.22133𝑡 − (
127.0391180
+0.63524𝜀2

−0.7283𝛾
)
𝑡2

2
−(

−0.004499284709𝜀3 + 320.2194878
−0.138363𝛼 + 4.407401276𝑇2

+2.46825 ⋅ 10−8𝛽 − 0.004339725𝛽
)
𝑡3

3
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RESULTS AND DISCUSSION 

The interpretation of numerical simulation conducted through iterative steps using  homotopy perturbation method is depicted 

pictorially below.  

 
Figure 1: Impact of Vaccination Rate (𝛼) on Measles Prevalence 

 

 
Figure 2: Impact of Progression Rate (𝜌) on Measles Prevalence 
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Figure 3: Impact of Treatment Rate (𝛿) on Measles Prevalence 

 

 
Figure 4: Impact of Treatment Rate (𝜃) on Measles Prevalence 

 

 
Figure 5: Infection at Equilibrium:𝑅0 < 1. In this case Measles Disease Dies out (Dark spot) with an Assumed 

Parameter Base Line 
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Figure 6: Endemic Equilibrium𝑅0 > 1. In this case Measles Disease Persist in the Population (dark 

spot) where all Parameter Values are Assumed for its Base Line 

 

Discussion 

The study points out that vaccination is essential for getting 

rid of measles. Although reaching high vaccination coverage 

is still vital, our findings suggest that other things like vaccine 

hesitancy increasing awareness and education play a major 

role in curbing disease spread. A combination of medical and 

behavioral measures is more successful in decreasing the 

number of measles infection cases and the death rate. These 

programs must be applied early and adequately for disease 

control to continue. For this research, Maple software was 

used to perform numerical simulations and visualize the 

effects of changing intervention parameters on the disease. 

The outcomes are shown in graphs and are thoroughly 

reviewed. Figure 1 shows that increasing vaccination rates 

lowers both the numbers of people who are not vaccinated and 

those who get the disease again, also the higher the 

vaccination rates, the fewer infected persons there are. Figure 

2 proves that the number of infected cases lowers due to 

vaccination. From Figures 3 and 4 we deduce that increasing 

the number of people treated greatly reduces infections and 

when people receive enough vaccinations, the numbers of 

both infected and immunized individuals fall significantly, 

proving a strong link between treatment and 

vaccination.Figure5, 6 clearly show that in contrast, an 

endemic equilibrium means the disease continues in the 

system, mainly because the rate of vaccination  used and the 

level of behaviors  help to control how the disease spreads. 

Still, further highlighting the role of individual’s plays helps 

reduce the numbers of people suffering from measles. 

 

CONCLUSION 

The method used in this paper is homotopy perturbation 

which led to the creation of a valid numerical answer 

describing the effects of strong treatment vaccination efficacy 

on measles. The model was able to give accurate predictions 

that led to the R0 of measles being found below unity for this 

approach. Numerical output was then run to see the effects of 

vaccination on measles within the population and detailed 

analysis of the graphs was done to understand the specific 

signals of both experimental and biological changes affecting 

different groups with time. Even so, using oral vaccine 

effectively and improving environmental cleanliness is useful 

for addressing the ongoing problem of measles and setting up 

strategies to prevent its spread and demolish in the short run. 

Raising awareness and providing information through 

education programs is very important for combating the 

spread of measles in the short run. 
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